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ABSTRACT

Automation of test oracles is one of the most challenging facets of software testing, but

remains comparatively less addressed compared to automated test input generation. Test

oracles rely on a ground-truth that can distinguish between the correct and buggy behavior

to determine whether a test fails (detects a bug) or passes. What makes the oracle problem

challenging and undecidable is the assumption that the ground-truth should know the exact

expected, correct, or buggy behavior. However, we argue that one can still build an accurate

oracle without knowing the exact correct or buggy behavior, but how these two might

differ. This research presents Seer, a learning-based approach that in the absence of test

assertions or other types of oracle, can determine whether a unit test passes or fails on a

given method under test (MUT). To build the ground-truth, Seer jointly embeds unit tests

and the implementation of MUTs into a unified vector space, in such a way that the neural

representation of tests are similar to that of MUTs they pass on them, but dissimilar to

MUTs they fail on them. The classifier built on top of this vector representation serves as

the oracle to generate “fail” labels, when test inputs detect a bug in MUT or “pass” labels,

otherwise. Our extensive experiments on applying Seer to more than 5K unit tests from

a diverse set of open-source Java projects show that the produced oracle is (1) effective in

predicting the fail or pass labels, achieving an overall accuracy, precision, recall, and F1

measure of 93%, 86%, 94%, and 90%, (2) generalizable, predicting the labels for the unit test

of projects that were not in training or validation set with negligible performance drop, and

(3) efficient, detecting the existence of bugs in only 6.5 milliseconds on average. Moreover,

by interpreting the neural model and looking at it beyond a closed-box solution, we confirm

that the oracle is valid, i.e., it predicts the labels through learning relevant features.

ii



ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my adviser, Professor

Reyhaneh Jabbarvand, whose expertise, understanding, and patience added considerably to

my graduate experience. Her insightful guidance and unwavering support were instrumental

in helping me navigate the complexities of my research and develop as a scholar. I started

working in Software Engineering research without any background, I am grateful that she has

given me a chance to participate in the University of Illinois Urbana-Champaign’s research

internship program in summer of 2021. She always believed in my abilities to become a

successful researcher in the field.

I would like to particularly thank my academic mentor, Professor Darko Marinov. His

diverse perspectives, expertise, and random arguments at Siebel Center for Computer Science

has helped me a lot to understand the nature of my research, and think twice before making

a conclusion. I will be always grateful to have a mentor like him.

I am forever indebted to my parents, my mom Freshta and my dad Abdul Hakim, for

their unconditional love and support throughout my academic journey. My parents never

formally attended university due to certain circumstances, but they always believed in my

work, supporting me in every moment. I would like to thank my sister Yalda, and my brother

Ferdows for their immense support as well.
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Gupta, Kevin Johannes Ros and Louis Marek Schatzki for supporting me during my graduate

studies. My time at the University of Illinois Urbana-Champaign would not have been

pleasant if not for the presence of all my friends.

iii



TABLE OF CONTENTS

CHAPTER 1 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 ILLUSTRATIVE EXAMPLE . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 3 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 4 SEER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 Method Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Learning Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Dataset Curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER 5 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 RQ1: Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 RQ2: Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 RQ3: Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5 RQ4: Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



CHAPTER 1: PROBLEM STATEMENT

1.1 MOTIVATION

A unit test similar to the example in Figure 1.1 consists of four main components: test input

(e1, e2, and e3), MUT invocation (obj.sort()), test output, and test oracle (assertEquals).

Given a ground-truth that knows the program’s expected correct or buggy behavior for given

inputs, oracles can determine test results, i.e., whether a test passes or fails. For example,

the ground-truth in the example of Figure 1.1 identifies the sorted output for given inputs to

be e1, e2, e3. Consequently, the assertion oracle checks if the produced output matches

the expected one to generate the test result. Construction of the ground-truth can be a

challenging task. Furthermore, the absence of automated ground-truths demands humans

to decide whether the generated outputs are correct, demonstrating a significant bottleneck

that inhibits absolute test automation [1].

@Test
public void testAdd() {   
  ExampleObject obj = new ExampleObject();
  obj.add(“e1”);
  obj.add(“e2”);
  obj.add(“e3”);
  String output = obj.sort();
  Assert.assertEquals(output,“e1,e2,e3 ”);
}

Figure 1.1: A simple JUnit test consists of four main components: input, MUT invocation, output,
and assertion

1.2 RELATED WORK

State-of-the-art test oracle automation techniques can be divided into three main categories:

Implicit, Specified, and Derived oracles.
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1.2.1 Implicit Oracle

Implicit oracle relies on some implicit knowledge to identify whether a test passes or

fails. Examples of such implicit knowledge are buffer overflow almost always yields an error,

excessive CPU usage is a likely indicator of server disruptions, and unnecessary battery usage

is evidence of energy defects in mobile apps. While quite effective and automated, implicit

oracles can only determine the presence of limited categories of bugs. Implicit test oracle

can be built on any procedure that detects anomalies such as abnormal termination due to a

crash or an execution failure [2, 3]. This is because such anomalies are blatant faults; that is,

no more information is required to ascertain whether the program behaved correctly or not.

1.2.2 Specified Oracle

Specified oracle determines the expected output of test execution and compares it with

the actual output to decide whether a test passes or fails. To identify the expected output,

these oracles require existence of formal specifications [4, 5, 6, 7, 8, 9] or contracts (pre-and

post-conditions) [10, 11, 12, 13, 14] for the system under test. The performance and usability

of such oracle highly depend on the availability, completeness, and quality of specifications.

However, for many ever-changing software systems, specifications and contracts either do

not exist or fall out of date. Even if automated techniques generate specifications, they are

usually quite abstract, and inferring concrete test outputs from them is not guaranteed or

is imprecise [1, 15]. State-of-the-art ML-enabled techniques alleviate such limitations by

predicting meaningful specifications [16] or assert statements [17, 18, 19]. Compared to Seer,

these techniques evaluate a limited set of properties related to program behavior only at a

certain point the assertions [4].

1.2.3 Derived Oracle

Derived oracle decides the passing or failure of a test by distinguishing the system’s correct

from incorrect behavior rather than knowing the exact output. The correct and incorrect

behavior can be (1) inferred from some meta-data such as execution logs [20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 34]; (2) provided as properties of the intended functionality

(metamorphic relations) [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,

54, 55, 56, 57, 58]; or (3) checked against other versions of the software [59, 60, 61, 62, 63, 64].

Derived oracles are pragmatic, but are generally incomplete, i.e., can only identify test

outputs for a subset of inputs. Seer, while considered as a derived oracle, alleviates this
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problem through a domain-specific embedding, i.e., semantically separating the buggy and

correct code in the embedding space with respect to test results. Consequently, the neural

model that serves as the oracle considers that general knowledge to predict a passing or

failing verdicts.

1.3 HYPOTHESIS

To automatically build the ground-truth for test oracles, traditional and machine learning-

based techniques rely on existing or derived formal specifications [4], assertions [17, 18, 19,

65, 66], program invariants [23, 67], and metamorphic relations [64, 68, 69, 70] for identifying

the correct behavior. Some other techniques determine the patterns corresponding to specific

types of bugs observed during test execution as an indicator of the buggy behavior [71, 72].

The commonality between these techniques is their emphasis on identifying the exact correct

or buggy behavior to build the ground-truth. However, identifying the exact behavior

and output is an undecidable problem; thereby, such techniques only partially validate the

program. That is, the program can only be validated under a subset of test inputs with

known expected outputs, or limited properties of the program determined by the invariants

or metamorphic relations can be validated. While partial oracles enhance test automation to

some degree, they may not guarantee the existence of a successful test driver.

The key insight in our research is that one can still create an accurate test oracle without

knowing the explicit relationship between inputs and outputs under correct or buggy behavior.

Instead, the ground-truth will determine how different the test inputs are correlated to outputs

under the correct and buggy behavior. An oracle based on this ground-truth eliminates the

need for assert statements and identifying the exact expected output in assertions, enhancing

unit testing to a great extent [18].

In this research, we present Seer 1, an automated oracle to predict unit test results.

Specifically, given a pair of ⟨ti,mi⟩, where ti represents a unit test without any assertions, and

mi denotes the implementation of MUT, Seer automatically determines whether the test

passes or fails on the MUT. To construct the ground-truth, Seer leverages joint embedding

to distinguish between the neural representation of correct and buggy MUTs. A classifier

on top of this embedding learns the correlation between inputs and outputs to predict test

results.

1A person who can see what the future holds through supernatural insight.
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1.4 SUMMARY OF FINDINGS

This work makes the following contributions:

• A novel domain-specific joint embedding of the unit tests and MUTs, which semantically

separates MUTs’ neural representations based on whether unit tests pass or fail on them.

• Design of an interpretable DL model that serves as a test oracle to generate passing or

failing labels for unit tests without assertions. The interpretability enables us to go beyond

the usage of DL as a closed-box technique and verify if the model predicts labels by looking

at the relevant tokens in the implementation of MUTs. While it is out of the scope of this

work, the relevant tokens involved in the model’s decision can be further used by developers

to localize the detected bugs.

• An extensive empirical evaluation on widely used open-source Java programs demonstrating

that Seer is (1) effective—achieves an overall accuracy, precision, recall, and F1 measure

of 93%, 86%, 94%, and 90%, (2) generalizable—predicting the labels for the unit test of

projects that were not in training or validation set with negligible performance drop, and

(3) efficient—once trained, it detects the existence of bugs in only 6.5 milliseconds on

average. Seer’s implementation and artifacts are publicly available [73].

The remainder of this dissertation is organized as follows. Chapter 2 illustrates a motivating

example. Chapter 3 provides an overview of Seer, while Chapter 4 describes details of the

proposed technique. Finally, Chapter 5 presents the evaluation results.
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CHAPTER 2: ILLUSTRATIVE EXAMPLE

To illustrate the limitations of prior work and explain the intuition behind our research,

we use two code examples shown in Figure 2.1-a. The code snippet on the top is the correct

implementation of a mathematical function that computes the output as |x|×(x+2)×(x−2).

The buggy version, on the other hand, computes the output as |x× (x+ 2)× (x− 2)| due to

the displacement of a single parenthesis to the end of the assignment instead of after variable

x.

Formally speaking, the behavior of a code is a function B : I → O that maps inputs

in I to corresponding outputs in O. In our example, the mapping functions representing

the explicit behavior of correct and buggy implementations are depicted as blue and yellow

graphs in Figure 2.1-b. If such a function is known, an oracle can use it as a ground truth to

distinguish between buggy and correct behavior. However, in reality, MUTs take multiple

complex inputs, e.g., arrays and user-defined objects, resulting in n-dimensional mappings

between inputs and outputs that are infeasible to determine. Therefore, test oracles rely

on partial ground-truths. No matter how we build the ground-truth, the oracle’s decision

for test inputs belonging to (−2, 0) ∪ (0, 2) should be “fail” due to different behavior of the

correct and buggy implementations in this range.

Suppose that we have two JUnit tests shown in Figure 2.1-c to assess the correctness

of the example buggy method. The ground-truth for identifying the expected output in

the assert statement of test1 is based on dynamic invariant detection, while the ground-

truth for the assert statement in test2 is based on a metamorphic relation f(x) = f(−x).
Dynamic invariant detection techniques rely on the execution traces of the existing code.

Since our MUT is buggy, the invariant only captures properties of the buggy behavior,

// Correct implementation f(x) = |x|*(x+2)*(x-2)
public double example(double x){
   double output;
   if(x>=0)
       output = x*(x+2)*(x-2);
   else
       output = Math.abs(x)*(x+2)*(x-2);
   return output;
}

// Buggy implementation f(x) = |x*(x+2)*(x-2)|
public double example_buggy(double x){
   double output;
   output = Math.abs(x*(x+2)*(x-2));
   return output;
}

-3        -2        -1         0          1         2        3 

15

10

5

0

-5

      buggy      correct            

(c)(a)

@Test
public void test1() {   
   double o1 = example_buggy(0.5);
   Assert.assertTrue(“msg”,o1>=0);
}

@Test
public void test2() {   
   double o2 = example_buggy(-1);
   double o3 = example_buggy(1);
   Assert.assertEquals(o2,o3);
}

(b)

input

ou
tp

ut

Figure 2.1: (a) correct (top) and buggy (bottom) implementations of the mathematical function
f(x) = |x| × (x+ 2)× (x− 2), (b) visualization of the correct and buggy implementations behavior,
(c) JUnit tests with assertions to assess correctness of the buggy implementation
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Embedding Space

public double example(double x){
   double output;
   if(x>=0)
       output = x*(x+ 2)*(x-2);
   else
       output = Math.abs(x)*(x+2)*(x-2);
   return output;
}

public double example_buggy(double x){
   double output;
   output = Math. abs(x*(x+2)*(x-2));
   return output;
}

@Test
public void test1() {   
   double o1 = example_buggy(0.5);
}

@Test
public void test2() {   
   double o2 = example_buggy(-1);
   double o3 = example_buggy(1);
}

@Test
public void test3() {   
   double o4 = example_buggy(0);
}

Figure 2.2: The intuition behind the joint embedding of tests and MUTs with the goal of separating
the representation of buggy and correct MUTs with respect to tests

i.e., output ≥ 0. By checking the generated invariant in the assertion, the test passes for

x = 0.5 ∈ (−2, 0) ∪ (0, 2), while it should fail to demonstrate the bug. Similarly, the

metamorphic relation of f(x) = f(−x) holds for both correct and buggy implementations;

thereby, the assertion wrongly decides the test inputs in the non-overlapping range as passed.

This example shows that identifying the explicit correct (or buggy) behavior to build a

ground-truth, which has been the focus of prior work, has notable limitations. In this research,

instead of realizing how the inputs are explicitly related to outputs under either correct or

buggy behavior, we aim to learn how inputs are differently correlated to outputs for failing

and passing pairs of ⟨ti,mi⟩. Here, ti represents a unit test without any assertions, and mi

denotes the implementation of the MUT. To that end, Seer learns the vector representation

of both MUT and test, so that the tests have a similar vector representation to the MUTs

they pass on them, but dissimilar vector representation to MUTs they can reveal their bug,

i.e., fail on them. Such joint embedding separates the representation of buggy and correct

MUTs in the n-dimensional vector space.

Figure 2.2 shows the intuition behind the joint embedding in Seer. Here, since test inputs

in test1 and test2 can reveal the bug in example buggy, they are closer to the correct

MUT and farther from the buggy MUT in the embedding space, i.e., they have a similar

vector representation as correct MUT but dissimilar from buggy MUT. On the other hand,

test3 that cannot reveal the bug and should pass on both the buggy and correct MUTs, has

the same distance from the correct and buggy MUTs in the embedding space. Compared

to Figure 2.1-b, there is no explicit relationship between test inputs and outputs under

correct or buggy behavior, but the embedding representation of correct and buggy MUTs are

distinguished based on how the output they generate are correlated differently to the inputs
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of passing or failing tests.

In our research, we hypothesize that knowing the exact ground-truth is not necessary to

construct an oracle. Instead, an automated oracle can decide the correct verdict on test

execution if it can correlate tests, which represent inputs, and code, which transforms inputs

to corresponding output, so that failure-inducing tests are strongly correlated with buggy

code and loosely correlated with correct code.

Seer constructs oracles automatically in two distinct phases. In phase one, it learns

the differences of correct and buggy code with respect to a test revealing the bug in high-

dimensional space. Specifically, it uses contrastive learning to learn the similarity and

dissimilarity between representations of buggy code, correct code, and test. Later, in phase

two, Seer uses the learned representations from the previous phase and performs further

training to predict test verdicts for a given code and test. That is, it predicts either a “pass”

or “fail” outcome. The intuition here is that, when predicting a verdict during classification,

the model will leverage the learned representations from phase one.
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CHAPTER 3: OVERVIEW
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Figure 3.1: Overview of the Seer framework

Figure 3.1 provides an overview of Seer framework consisting of four major components:

(1) Method Extractor, (2) Dataset Augmentor, (3) Learning Module, and (4) Interpreter. Seer

requires a high-quality and large dataset of ⟨ti,mi⟩ instances to train the oracle. Given a set

of programs and their corresponding test suites, the Method Extractor component builds such

a dataset by extracting the implementation of MUT invocations in tests through a lightweight

static analysis (details in §4.1). At the next step, Method Extractor creates labeled tuples

in the form of ⟨ti,mi, li⟩, where ti represents a unit test, mi denotes the implementation of

MUT, and li shows the test result outcome, which could be P (pass) or F (fail). Dataset

Augmentor component then takes the generated dataset and augments it with additional
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instances to diversify the bugs and account for imbalanced labels (details in §4.3).
Once the training dataset is ready, Seer feeds it to the Learning Module to train the

oracle through two phases. In the Phase 1 training, the Learning Module learns the vector

representation of the test ti and the MUT mi through joint embedding by minimizing the

distance among passing tuples ⟨ti,mi, P ⟩, while maximizing the distance among failing tuples

⟨ti,mi, F ⟩ (detail in §4.2). As a result, the vector representation of a test is similar to

the MUTs it passes on them, but dissimilar to the MUTs it fails on. After learning the

discriminative vector representations, Learning Module leverages transfer learning [74] and

trains a classifier on top of the embedding network, which serves as our test oracle. To

predict the label, Seer takes a unit test and the program under test as an input and extracts

the implementation of invoked MUT(s). Given the produced pair of ⟨ti,mi⟩, the embedding

network first computes their vector representations, and the classifier predicts the label,

indicating whether a test passes on the given MUT or fails.

Seer goes beyond the use of DL as a closed-box approach and interprets the learned model

for two purposes: (1) to verify if the embedding does its job in separating the representation

of MUTs based on whether a test passes or fails on them, and (2) to verify the validity of the

model by checking if the code tokens that impacted the oracle’s decision are relevant (§4.4).
In the next section, we describe the details of Seer’s components.
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CHAPTER 4: SEER

This section will first explain how to prepare the inputs to the Learning Module, followed

by the details about Seer’s neural architecture, dataset curation, and model interpretation.

4.1 METHOD EXTRACTOR

Seer’s Learning Module requires labeled pairs of ⟨ti,mi⟩ to realize the correlation between

the inputs (provided by unit tests ti) and outputs (produced by MUT mi). Given a test suite

T = {t1, t2, . . . , tn} consists of n unit tests and the program under test P = {m1,m2, . . . ,mk}
consists of k developer-written methods2, Method Extractor extracts mi, the implementation

of a MUT directly called in the body of the unit test ti.

Method extraction can be performed statically, i.e., extracting the whole body of the MUTs

regardless of the statements covered by a given test, or dynamically, i.e., only considering

the executed statements by a test. While the latter is more intuitive in helping the model

focus on the executed lines for predicting test verdicts, recent studies have shown that

neural models learn the semantics of the code and context more effectively if provided global

information [75, 76]. Consequently, the Model Extractor performs a lightweight flow-sensitive

analysis on a given unit test ti, identifies the MethodInvocation that belongs to the program

under test, and extracts the corresponding method signature and the body. If a test invokes

multiple methods, Model Extractor concatenates the extracted information for the MUTs in

the order of invocation. In the illustrative example of Figure 2.1, Method Extractor identifies

example buggy method as mi and extracts the whole text of the method, including the

method signature and body.

4.2 LEARNING MODULE

The neural architecture of Seer is shown in Figure 4.1. Learning the neural model that

serves as an oracle happens in two phases. In Phase 1 training, Seer learns the vector

representation of unit tests and MUTs, in such a way that the representation of buggy and

correct MUTs are different. At the next step, the representation of ⟨ti,mi⟩ pairs will be fed

into a classifier, helping Seer to learn the correlation between inputs provided by ti and

outputs produced by mi. Since the produced representation of buggy and correct MUTs are

2We exclude third-party APIs as their code may not be available.
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different, the oracle ultimately learns how differently the inputs are correlated to outputs

under the correct and buggy behavior.

During the Phase 1 training, Seer learns the vector representation of unit tests and MUTs

through joint embedding [77]. Joint embedding, also known as multi-modal embedding,

has been widely used to embed heterogeneous data into a unified vector space so that

semantically similar concepts across the two modalities reside closer in the embedding space.

For example, in computer vision, researchers have used Convolutional Neural Network (CNN)

and Recurrent Neural Network (RNN) to jointly embed images and text into the same vector

space for labeling images [78].

We adopt the concept of joint-embedding in our problem to semantically separate the

representation of correct and buggy MUTs concerning the result of tests. Specifically, we

hypothesize that by jointly embedding the unit tests and MUTs into a unified vector space, so

that tests have similar vector representations to the MUTs they pass on them but are different

from the MUTs they fail on them, the resulting embedding separates the representation of

correct and buggy MUTs. The joint embedding of unit test, ti, and implementation of MUT,

mi, can be formulated as follows:

mi
ϕ−→ Dmi

−→ J(Dmi
, Dti)←− Dti

ψ←− ti (4.1)

where ϕ is an embedding function to map mi into a d-dimensional vector space D; ψ is an

embedding function to map ti into the same vector space D; and J(, ) is a similarity measure

to score the matching degrees of Dmi
and Dti in order to put mi and ti closer or farther

in the embedding space. Seer uses the cosine similarity metric to measure the similarity

between the vector representations of ti and mi. A small cosine similarity means two vectors

are closer together in d-dimensional embedding spaces, while a bigger cosine similarity means

the vectors point to different angles, i.e., are farther from each other in the embedding space.

To learn and semantically separate the representation of correct and buggy mis with respects

to the test results, Seer minimizes the ranking loss as follows:

L(θ) =
∑

⟨ti,mi+,mi−⟩

max(cos(Dti −Dmi+)− cos(Dti −Dmi−) + α, 0) (4.2)

where Dti is the vector representation of ti, Dmi+ is the vector representation of a MUT that

ti passes on it, and Dmi− is the vector representation of a MUT that ti fails on it. The θ

and α represent model parameters and a constant margin value, respectively. Intuitively, by

minimizing the margin ranking loss, Seer learns to minimize the distance between Dti and

Dmi+, while maximizing the distance between Dti and Dmi−.
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Figure 4.1: Overall architecture of Seer

After learning the vector representation of tests, Dti , and MUTs, Dmi
, in Phase 1, Seer

concatenates them to create a single continuous feature representation for the ⟨ti,mi⟩ pair.
The resulting combined feature vector is fed into a series of fully connected layers in Phase 2

training to decode the learned features into a specific target class, i.e., pass or fail.

4.3 DATASET CURATION

Training of Seer requires a large and high-quality dataset, i.e., a dataset consists of

passing and failing ⟨ti, ci⟩ pairs representing a diverse set of bugs across different projects. To

construct the dataset, we started with the Defects4J [79], which is a collection of reproducible

bugs in large and widely-used Java projects. Each bug in this dataset is accompanied by the

buggy and fixed versions of subject programs as well as developer-written passing and failing

tests. Our rationales to build the dataset based on Defects4J are: (1) the bugs are isolated

and reproducible, making it easier for the neural model to learn relevant features; and (2) it
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Algorithm 4.1: Dataset Augmentation Algorithm

Input: MUT, order
Output: A Higher Order Mutant of MUT (HOM)

1 Mutables ← getUniqueMutables (MUT )
2 counter ← order
3 HOM ← MUT
4 foreach mutable ∈ Mutables do
5 mutant ← mutate (MUT ,mutable.op,mutable.loc)
6 if counter > 0 then
7 if isCompilable(mutant) then
8 HOM ← mutant
9 counter ← counter − 1

10 else
11 return HOM

12 else
13 break

14 return HOM

contains failing developer-written tests, helping with the generation of a balanced

dataset, since the automated generation of failure-triggering tests using Randoop [66] and

EvoSuite [65] is not guaranteed.

A significant limitation of Defects4J dataset is the complexity of the bugs, i.e., the majority

of bugs involve only one statement in the code. This issue can degrade the performance of

Seer in two ways. First of all, the model may treat small changes in the code as noise and

may not include them in learning, achieving a lower performance [80, 81]. More importantly,

a model trained on simple bugs may not generalize to complex, more realistic bugs. Inspired

by the power of mutation testing in curating high-quality training datasets [71] and the fact

that higher-order mutants [82] are more representative of complex bugs, Dataset Augmentor

component of Seer takes a passing ⟨ti,mi⟩ pair as input and mutates the MUT repeatedly

at different locations to generate higher-order mutants.

Algorithm 4.1 explains our dataset augmentation process. The algorithm takes the MUT

and order—the maximum number of times we mutate a given MUT—as an input and

generates a higher-order mutant, HOM . To that end, it first identifies unique pairs of

Mutables = ⟨op, loc⟩ that demonstrate the locations loc in MUT where a mutation operator

op can be applied (Line 1). Next, it mutates the MUT once at a time using these pairs (Lines

4-5). After each mutation, the algorithm checks whether or not the generated mutant is

compilable (Line 7). The algorithm continues the mutation using the next mutable (Lines
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Figure 4.2: The importance of Self-Attention in the oracle problem

8-9) if the mutant is compilable. Otherwise, it reverts the mutation and terminates with the

produced HOM (Lines 10-11). Mutation continues until the MUT is mutated order times

or it has been mutated at all the mutable locations.

4.4 INTERPRETATION

Without interpretation, one cannot trust the performance of ML, and specifically DL models,

as their learning depends on millions of parameters. Specifically, such intelligent models can

create unrealistically good predictions, but based on learning from irrelevant features due to

the noise in the dataset or data leakage problem [83]. To ensure the trustworthiness of Seer,

we validate the following two hypotheses by interpreting the Learning Module: Hypothesis 1.

The oracle looks at relevant tokens in the MUT to predict a test result; and (2) Hypothesis

2. The embedding network separates buggy and correct MUTs in the embedding space by
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distinguishing their vector representations. We will discuss the details of Attention Analysis

and Embedding Analysis to investigate the correctness of Hypothesis 1 and Hypothesis 2,

respectively.

4.4.1 Attention Analysis

Attention mechanism [84], which was initially proposed to overcome the long sequence

problem in Recurrent Neural Networks (RNNs), is a method for helping DL models to identify

the importance of single features in a feature sequence as they perform their tasks. Attention

mechanism serves two purposes in neural architectures; first, it helps with the model’s

performance. More importantly, it has been extensively used to resolve the interpretability

of deep neural models. The initial implementations of the Attention mechanism were neural

layers between the encoder and decoder components in the neural architecture, producing

attention weight vectors,
−→
AT = {w0, . . . , wn}, as an output. In the context of neural code

analysis, wi is the probability that given a statement with n tokens, how important is the

token at location i in the statement when predicting a label. The higher the Attention weight

for a feature, the more the model attends to it when making a prediction.

Seer uses Multi-Head Attention [84, 85], also known as Self Attention, to consider the

relative importance of a token in the statement when learning. The output of a Self Attention

layer is an n× n matrix SA = [[w00 , . . . , w0n ], . . . , [wn0 , . . . , wnn ]], where wij represents the

how important is the token at location i given a specific token at location j. Figure 4.2

shows the difference between these two Attention mechanisms for the buggy statement in

our illustrative example (for the sake of space and readability, Figure 4.2 shows only a subset

of SA corresponding to the buggy statement). (Figure 2.1-a). As shown in this figure, Self

Attention is more successful at capturing the importance of closing parenthesis with respect

to open ones compared to the traditional Attention mechanism. Algorithm 4.2 presents

Seer’s approach for Attention analysis, i.e., analyzing the SA matrix to identify which

tokens and statements attended the most in the MUT to predict the test result.

For a given pair of ⟨ti,mi⟩, Algorithm 4.2 takes MUT’s tokens, {c0, . . . , cn}, Self Attention
matrix, SA = [[w00 , . . . , w0n ], . . . , [wn0 , . . . , wnn ]], and Attention threshold value, k, as an

input to identify the set of attended tokens, ATkn and attended statements ASmt, as outputs.

To that end, the Algorithm traverses SA matrix row by row (Lines 3-7), identifies the top k%

most attended tokens—top k tokens with the highest Attention weight value (Line 4), and

merges the attended tokens per each row for the entire matrix along with their corresponding

indices (Lines 5-7). The outcome of merge is the set of attended tokens, ATkn. When

merging, considering the indices is specifically important, as similar tokens at different indices
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Algorithm 4.2: Attention Analysis

Input: MUT’s tokens
−−→
Tkn = {c0, . . . , cn}

Input: MUT’s statements
−−→
Smt = {s0, . . . , sm}

Input: SA = [[w00 , . . . , w0n ], . . . , [wn0 , . . . , wnn ]]
Input: Attention threshold k
Output: Attended tokens ATkn, Attended statements ASmt

1 ATkn ← ∅ ASmt ← ∅
2 foreach row = [wi0 , . . . , win ] ∈ SA do

// localATkn = {⟨ci, indi⟩| indi is index of ci in
−−→
Tkn}

3 localATkn← getMostAttended(row ,Tkn, k) foreach ⟨ci, indi⟩ ∈ localATkn do
4 if ¬ATkn.contains(⟨ci, indi⟩) then
5 ATkn← ATkn ∪ ci

6 foreach si ∈ Smt do
7 if |si ∩ ATkn| > k then
8 ASmt← ASmt ∪ si

might be attended differently. In the example of Figure 4.2, while the token “(” appears

multiple times in SA at different indices, its highest attention is in the last index.

Finally, the Algorithm iterates over MUT’s statements, {s0, . . . , sm}, and determines the

statements that k% of their tokens overlap with the attended tokens in ATkn (Lines 8-10).

Such statements indicate the buggy statements in cases that the predicted label for a ⟨ti,mi⟩
pair is “fail”. The intuition here is that since the number of buggy lines is limited, according

to the Generalized Pigeonhole Principle [86], there is at least one statement with more than

k% tokens among attended tokens ATkn.

4.4.2 Embedding Analysis

Seer relies on visualization techniques to validate the separation of the buggy and correct

MUT representations in the embedding space. Given the high dimensionality of embedding

vectors, however, the first step in the embedding analysis is reducing the dimension of

representations. Dimensionality reduction algorithms such as PCA [87], LDA [88], and

tSNE [89] concentrate on placing dissimilar data points far apart in a lower dimension

representation.

Among the most popular dimensionality reduction algorithms, Seer uses Linear Discrimi-

nant Analysis (LDA), as it recognizes the class labels and maximizes the separation between

classes during the dimensionality reduction. Figure 4.3 shows the intuition behind how LDA
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Latent Discriminant Axis

Figure 4.3: The intuition behind LDA dimensionality reduction

performs high-dimensionality reduction. The scattered plots represent the distribution of

buggy (yellow) and correct (blue) MUTs in high-dimensional embedding space, and the curves

represent that of in the lower dimension. As demonstrated by Figure 4.3, if the distributions

of reduced-dimension instances of two classes overlap, they are not separated correctly in the

higher dimension. Otherwise, the instances of buggy and correct classes are separated in the

high-dimensional embedding space.
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CHAPTER 5: EVALUATION

To evaluate effectiveness of Seer, we investigate the following research questions:

RQ1: Effectiveness . How effective are the proposed techniques in predicting accurate passing

or failing test labels? What type of bugs the proposed oracle can detect, and what bugs are

harder for the oracle to detect?

RQ2: Generalization. To what extent the proposed technique can predict test labels for the

Java projects it has not been trained on?

RQ3: Interpretation. Can embedding truly distinguish between the representation of MUTs

for passing and failing ⟨test,MUT⟩ pairs? What features impact the oracle’s decision?

RQ4: Performance. What are the performance characteristics of the proposed technique?

5.1 EXPERIMENT SETUP

We will explain the details of our experimental setup for the sake of reproducibility.

Morever, we have made all artifacts of Seer publicly available on GitHub [73].

5.1.1 Dataset:

Table 5.1 shows details about the properties of the dataset used for training, validation,

and testing of Seer. Our dataset is built on top of Defects4J [79], which consists of 835 bugs

in 17 widely-used Java projects. In addition to the data collected from Defects4J, we also

augmented the dataset with higher-order mutants and automatically generated Randoop [66]

tests. The former helps diversify the bugs in the dataset, and the latter generates tests that

either pass or fail on the newly added bugs. Finally, we removed all the assert statements

from the developer-written and automatically generated tests to avoid bias in learning from

them.

For generating our syntactic faults, we use mutation testing tool Major [90]. There are

two main reasons to prefer Major tool in our research: (1) Defects4J already supports Major,

and its CLI has commands to mutate (defects4j mutation) a specific bug using Major,

and (2) Major allows us to export source codes of generated mutants. We apply mutation to

15 projects of Defects4J. Collections and Mockito projects are not mutable as this is stated

in the issue tracker of Defects4J repository on GitHub. For mutable bugs of 15 projects, we

first find mutation operators applicable to buggy version and fixed version of each changed

method separately. To ensure that our mutants are representative of real bugs, we use higher
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order mutation (up to 5th order). After mutation step is completed, we choose at most 4

random-compilable higher order mutants for a found method (for buggy and fixed version

separately). Then we run both developer-written tests and Randoop tests on these chosen

mutants.

After the above-mentioned steps are completed, we have the following source codes extracted

for each modified method of each Defects4J bug:

• FC (fixed version of code)

• BC (buggy version of code)

• FC(M)s (set of mutants that are generated from fixed version)

• BC(M)s (set of mutants that are generated from buggy version)

We also have the information that whether a particular test of the bug is passed or failed

on each of these source codes. By using this information, we construct triplets of form

⟨T,C+, C−⟩ where T stands for test code, C+ is code that passes T and C− is code that

fails on T . The examples below can better clarify our approach:

• If FC(M) passes on T and BC(M) fails on T , we extract the ⟨T, FC(M), BC(M)⟩
triplet.

• If FC passes on T and FC(M) fails on T , we have ⟨T, FC, FC(M)⟩ triplet.

• If FC passes on T and BC fails on T , we have ⟨T, FC,BC⟩ triplet.

We also apply below constraints when generating our dataset:

• For each triplet, C+ and C− must be different than empty string. If not, we remove

the triplet from the dataset.

• There must not be any duplicates in the dataset. By checking the existence of duplicate

triplets and removing them, we ensure that all instances of our dataset are unique

triplet-wise.

• For each triplet, T must a covering test for modified method of C+ and C−. In other

words, T must directly call the modified method in its body. If it does not, we remove

the triplet from our dataset.

19



Table 5.1: Properties of the dataset.

Projects # Bugs # Mutants

Dataset

#Tests
#Pass, #Fail (Contrib %)

Defects4J Higher-order Mutants
Developer Tests Randoop Tests Developer Tests Randoop Tests
# Pass # Fail # Pass # Fail # Pass # Fail # Pass # Fail

Compress 47 24,322 30,753 (30.26%) 1,214 22 2,965 2230 385 265 192 23,480
Lang 64 12,824 15,130 (14.89%) 702 59 1,249 296 397 509 1,124 10,794
Chart 26 4,313 14,901 (14.66%) 248 37 5,316 4987 154 109 229 3,821
Math 106 9,488 13,580 (13.36%) 1,685 91 1,584 732 732 814 546 7,396
Codec 18 8,973 10,210 (10.05%) 271 11 648 307 375 54 93 8,451
Closure 174 1,615 3,170 (3.12%) 1,431 8 113 3 768 76 49 722

JacksonDB 112 581 2,818 (2.77%) 2,133 27 77 0 410 94 42 35
Time 26 203 2,415 (2.38%) 1,765 39 255 153 84 70 18 31
Jsoup 93 677 2,134 (2.1%) 925 57 458 17 125 234 277 41
Cli 39 913 1,612 (1.59%) 348 10 292 49 106 75 371 361
Csv 16 1,166 1,582 (1.56%) 327 6 83 0 297 2 23 844

JacksonCore 26 941 1,420 (1.4%) 331 15 105 28 320 163 136 322
Gson 18 531 1,386 (1.36%) 678 15 93 69 295 92 144 0
JxPath 22 143 314 (0.31%) 93 1 74 3 0 1 105 37
Mockito 38 0 100 (0.1%) 56 39 5 0 0 0 0 0

JacksonXml 6 49 81 (0.08%) 19 1 9 3 28 12 2 7
Collections 4 0 7 (0.01%) 4 1 2 0 0 0 0 0

Total 835 66,739 101,613 (100%) 12,230 439 13,328 8,877 4,476 2,570 3,351 56,342

As shown in Table 5.1, the final augmented dataset consists of 33, 385 passing pairs and

68, 228 failing pairs of ⟨ti,mi⟩, making a total of 101, 613 ⟨ti,mi⟩ pairs in the dataset. For

Phase 1 training, we construct ⟨ti,mi+,mi−⟩ tuples by merging passing and failing ⟨ti,mi⟩
pairs for common tests. That is , for a given test ti, we find all the m passing pairs and n

failing pairs of ⟨ti,mi⟩. If m and n are non-zero, we get total m× n tuples of ⟨ti,mi+,mi−⟩.
This provides us with 20, 759 tuples of ⟨ti,mi+,mi−⟩ for Phase 1 training, divided into 90%

training, 5% validation, and 5% testing instances. For Phase 2 training, we similarly divided

the original dataset with 101, 613 instances represented by Table 5.1.

5.1.2 Learning Module Configuration:

We implemented Seer’s Learning Module using PyTorch [91] open-source library. Multiple

factors can affect the neural models’ learning process and final performance. For the loss

function, which determines how well the algorithm approaches learning from the training

data, we used Margin Ranking Loss (MRL) in Phase 1 training and Weighted Cross-Entropy

Loss (WCEL) in Phase 2 training. MRL has been shown to outperform Cross-Entropy Loss

in learning the embeddings and putting data instances of the same target class closer to each

other than instances from other classes [92]. Since our embedding goal is similar, i.e., to put

passing pairs of ⟨ti,mi⟩ closer to each other compared to failing ones, MRL was a reasonable

loss function for learning the MUT and test embeddings.

For Phase 2 training, we chose Weighted Cross-Entropy Loss rather than Cross-Entropy
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Loss, which is commonly used in classification problems, since our dataset has more failing

pairs of ⟨ti,mi⟩ compared to passing pairs. To enhance the performance, we utilize AdamW

optimizer [93], which has been shown to outperform Adam optimizer [94] to update the

network weights and minimize this loss function iteratively.

The other factors that affect the model’s performance are hyperparameters and overfitting.

We followed a guided hyperparameter tuning to find a configuration for the model that results

in the best performance on the validation data. One of the most important hyperparameters is

the learning rate, which controls how much to change the model in response to the estimated

error each time the model updates weights. Choosing the learning rate is challenging as a

value too small may result in a long training process that could get stuck, whereas a larger

value may result in an unstable training process. The learning rate of Seer’s Learning Module

for Phase 1 and Phase 2 training are 1.34e−4 and 1.34e−6, respectively. The difference in

learning rates is because Phase 2 learning is incremental compared to Phase 1, and a similar

learning rate results in large, i.e., NaN, loss function values. Furthermore, we used 10-fold

cross-validation to avoid overfitting and implemented early-stopping criteria to terminate the

training. That is, we repeated the training/validation for 10 times on different training and

validation sets and chose the model that achieved the best performance. To automatically

terminate the learning, our patience level was 5 epochs, i.e., if the validation loss of the model

did not improve in 5 consecutive epochs, we assumed that learning had reached an optimum

level.

5.2 RQ1: EFFECTIVENESS

For this research question, we divided 101, 613 pairs of ⟨T,C, F ⟩ instances in our dataset

into 90% training, 5% validation, and 5% testing instances. To that end, we downsampled

such instances for each project by 90%, and used the remaining if possible. The only exception

was the Collections project, which we included its few instances only in the training set. We

select accuracy, precision, recall, and F1 score as metrics to measure the effectiveness of Seer

in predicting correct labels. Table 5.2 shows the result for this experiment under “Seer

with embedding” columns. These results are obtained through a 10-fold cross-validation, i.e.,

downsampling repeated 10 times.

Each row in Table 5.2 shows one of our subject projects and the percentage of instances

they have correctly predicted for different versions of Seer. These results confirm the

original implementation of Seer illustrated in Figure 4.1 can effectively predict

passing and failing labels for the test suite of each subject program, achieving

93% accuracy, 86% precision, 94% recall, and 90% F1 score. Despite an overall good
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Table 5.2: Effectiveness and Generalization of Seer in predicting test labels. TP, FP, TN, and FN
stands for True Positive, False Positive, True Negative, and False Negative, respectively.

Subjects
Seer with embedding

# Pass
TP (%), FN (%)

# Fail
TN (%), FP (%)

Compress 92.53%, 7.47% 98.18%, 1.82%
Lang 81.07%, 18.93% 92.6%, 7.4%
Chart 94.74%, 5.26% 88.03%, 11.97%
Math 93.83%, 6.17% 89.98%, 10.02%
Codec 79.12%, 20.88% 99.58%, 0.42%
Closure 98.36%, 1.64% 80.56%, 19.44%

JacksonDB* 100%, 0% 30.77%, 69.23%
Time* 100%, 0% 0%, 100%
Jsoup* 98.81%, 1.19% 0%, 100%
Cli 96.23%, 3.77% 60%, 40%
Csv 94.59%, 5.41% 98.21%, 1.79%

JacksonCore 97.06%, 2.94% 41.94%, 58.06%
Gson* 100%, 0% 66.67%, 33.33%
JxPath* 100%, 0% 25%, 75%
Mockito* 100%, 0% 0%, 100%

JacksonXml* 100%, 0% 0%, 100%
Collections* N/A, N/A N/A, N/A

Total 93.63%, 6.37% 92.77%, 7.23%

performance, Seer did not perform well on some projects (those marked by asterisks in

Table 5.2. Our investigation showed that due to the low contribution of these projects to the

dataset, the test data instances from them were either none, e.g., Collections project, or very

few. Consequently, the effect size of classification was very large.

False Negatives are not big issues in our proposed technique, as Seer is interpretable and

developers can quickly check the Attended tokens to verify the False Negative. To understand

the reasons for False Positives, we compared the True Negative and False Positive instances

from the following perspectives:

• Test type. The unit tests in our dataset are either developer-written tests or automatically

generated by Randoop. Majority of tis for True Negative instances belonged to Randoop.

However, for False Positives, half of the tis are developer-written tests while the other

half are Randoop tests. As a result, there is no significant correlation between the False

Positive instances and test type.

• # Test Tokens. The average number of test tokens for False Positive instances is 74

compared to 85 for True Negatives, which shows that Seer performs better when tests are
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longer. We believe that this is potentially because the representation of longer tests are

unique compared to shorter tests, making it easier for the model to predict a correct label

for them.

• # MUT tokens. The average number of MUT tokens for False Positive instances is 89

compared to 131 for True Negatives, which shows that Seer performs better when MUT’s

implementation has more tokens and statements. Similar to our argument about # test

tokens, short MUT sequences carry less semantic information, making it harder for the

model to predict test results.

• Bug type. Seer correctly predicts the test results for 95% of the higher order mutants.

This ratio for the real bugs from the Defects4J dataset is 80%. Given that we found no

significant correlation between the number of buggy lines in False Positive and True Negative

instances, we believe this happens because real bugs are unique. That is, while higher-order

mutation injects bugs at different locations and considers different combinations of mutation

operators, the operators are limited, making it easier for Seer to learn the bugs that

involve those operators. We argue that this is not a limitation of Seer, but the dataset,

which can be resolved by including more real bugs in the training dataset.

Moreover, the average number of tokens for the MUTs in misclassified examples is 89,

which is smaller than the average 131 tokens for instances that were correctly classified. This

indicates the fact that short sequences carry less semantic information and are harder for

the model to learn. In contrast, longer sequences make it easier for the model to predict

them since they have more embedding vectors. (2) Randoop tests are much longer than

developer-written tests. That is, the average length of Randoop tests is 108 tokens, while it

is 40 for developer-written tests. (3) The average number of lines changed when fixing a

bug in C- is significantly high in mutant MUTs. On average, there are roughly 3.61 lines

changed when fixing a buggy mutant code, while it is 1.35 lines for buggy real fault code.

5.3 RQ2: GENERALIZATION

In the previous research question, we showed that Seer can effectively serve as an oracle on

the unseen ⟨ti,mi⟩ pairs from the projects that were in the training dataset. In this research

question, we go one step forward to investigate how Seer generalizes to predict test labels for

⟨ti,mi⟩ pairs, where mi belongs to a project that was not in the training data. To that end,

we computed the contribution of each project (column “# Tests” in Table 5.1) and divided

the dataset into high-contribution projects with contribution values greater than 10%, and
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low-contribution projects. We used all the instances of the projects in the high-contribution

dataset for training and validation. Then, we tested the trained model on the projects in

the low-contribution dataset. For this research question, we only consider the precision and

recall values to evaluate the performance of Seer, as the low-contribution dataset is highly

imbalanced (passing ⟨ti,mi⟩ pairs are 3.5× more than failing pairs).

Compared to the original precision and recall values computed in RQ1 (86% and 93%),

the value of Seer’s performance metrics on unseen projects are 77% (9% ↓) and 82% (9% ↓).
Given that unseen projects have different statistical distributions compared to the projects

used for training, i.e., different tokens and hence vocabularies, the performance drop is

expected due to the Out of Distribution (OOD) problem [95]. Our further investigation of

the misclassified instances confirmed that the model’s performance was better on unseen

projects, whose vocabularies had a higher overlap with the vocabularies of the projects

used for training Seer, compared to that of for projects with less overlap in vocabularies.

These results demonstrate that Seer can achieve comparable performance on unseen

projects whose vocabularies overlap with the projects for training the oracle.

5.4 RQ3: INTERPRETATION

Recall that the goal of Seer’s interpretation is two-fold. First, we interpret the embedding

network to verify if it has correctly learned to separate the representation of correct and

buggy MUTs. More importantly, we interpret the oracle to identify which features, i.e.,

tokens in the MUT, and which statements were mostly attended when predicting a label.

From this information, we can determine whether the attended features are relevant to the

decision and whether the model’s performance is valid.

5.4.1 Attention Analysis

Given a threshold number k, Seer’s attention analysis algorithm (Algorithm 4.2) produces

a set of top k% attended tokens and attended statements in the MUT. To confirm that

Seer has attended to relevant tokens for predicting labels, we measured the percentage of

the buggy statements that are among attended statements in the MUT. Specifically, we

computed this metric for true negative test instances, i.e., ⟨ti,mi⟩ pairs for which the Seer

correctly identified to fail. Figure 5.1 shows the percentage of buggy statements that were

among the attended statements, and how this percentage changes in response to the change

of threshold value. These results demonstrate that Seer has indeed attended to relevant

tokens to predict test labels, and even with a small threshold value of 5%, it
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Figure 5.1: The percentage of attended buggy statements with respect to attention threshold

can correctly identify 50% of the buggy statements in the subject MUTs. One

interesting observation here is that increasing the threshold may not result in better bug

localization. For example, increasing the threshold to 40% or 50% results in non-buggy

statements being among the attended statements, decreasing the contribution of buggy

statements among attended statements.

We also manually investigated the heatmap visualization of the Self Attention matrix for the

failing ⟨ti,mi⟩ pairs to qualitatively confirm if Seer has considered relevant tokens to predict

labels. Figure 5.2 illustrates such case, where the buggy MUT is encodeBase64String of the

Codec project. As shown in Figure 5.2, the bug is due to feeding an incorrect argument to

encodeBase64 method, i.e., “true” instead of “false”. By looking at the heatmap visualization

of the Self Attention matrix, we can see that Seer has paid the most attention to the buggy

token when predicting the “fail” label for this test instance (for the sake of space and

readability, we have merged some of the tokens and adjusted the weights in the heatmap

visualization). As another example, where the bug is more complex and involves multiple

tokens or statements, consider the buggy MUT and its corresponding heatmap 3 visualization

of Self Attention in Figure 5.3. In this example, the return values of the two highlighted

3The tokens are merged in this heatmap and only the most attended tokens are labeled.
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public static String encodeBase64String (byte[] binaryData){
   return StringUtils.newStringUtf8(
               encodeBase64(binaryData, true));
}

String
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Figure 5.2: Visualization of the Self Attention for the method encodeBase64String in Codec
project, demonstrating that Seer has paid the highest attention to the buggy token, i.e., “true”

return statements are incorrect. Looking at the heatmap, we can see that the tokens of these

two statements are among the most attended tokens to predict the “fail” label.

5.4.2 Embedding Analysis

Figure 5.4 shows the result of embedding analysis as discussed in Section 4.4.2. The blue

and yellow distributions show the distinction between the embeddings of correct and buggy

MUTs, respectively, after LDA dimensionality reduction. As demonstrated by this figure, the

distribution of correct and buggy MUTs are almost distinct in the low-dimension space, which

confirms Seer’s ability to semantically distinguish the representation of buggy and

correct MUTs in the embedding space. There are some overlapping instances near

x = 0 between the correct and buggy MUTs distributions. Such overlap indicates that the

embeddings of a few buggy and correct MUTs are close to each other in the embedding space

with 200 dimensions. By manually investigating those instances, we realized that they belong

to ⟨ti,mi⟩ pairs that Seer failed to predict a correct label.
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public boolean equals(Object obj){
   if (this == obj)
       return true;
   if (obj == null || getClass() != obj.getClass())
       return true;
   ZipArchiveEntry other = (ZipArchiveEntry) obj;
   if (name == null) {
       if (other.name != null)
           return false;
   } else if (!name.equals(other.name))
       return false;
   return false;
}
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Figure 5.3: Visualization of the Self Attention for the method equals, demonstrating that Seer
has attended to buggy tokens at multiple locations
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Figure 5.4: Linear Discriminant Analysis (LDA) results. The yellow graph represents the distribu-
tion of buggy MUTs and the dashed blue graph represents the distribution of correct MUTs in the
reduced dimension

Moreover, Seer’s embedding analysis relies on Linear Discriminant Analysis (LDA) [96]

for reducing the embedding dimension from 200-d into a single one. There exist a number of

dimensionality reduction algorithms like Principle Component Analysis (PCA) [97] which

is not suitable in our context. That is, the PCA algorithm conserves the representation of

data when reducing the dimensionality. However, in our problem domain, we are interested

in showing the distinction between the learned embeddings of fixed code and buggy code

in high dimensions. In contrast, the LDA aims to reduce the dimensionality of embeddings

while maximizing the separation between classes (i.e., FC, BC). In a binary class setting, the

cost function which LDA tries to maximize is shown in Equation 5.1. In this equation, m1

and m2 correspond to the mean, while s21 and s22 correspond to the within-class variance of

projected distributions.

J(w) =
|m1 −m2|2

s21 + s22
(5.1)
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5.5 RQ4: PERFORMANCE

To answer this research question, we evaluated the time required for Phase 1 and Phase 2

training, as well as the time for testing the oracle. We ran the experiments on a Tesla T4

GPU with 16GB GDDR6 memory. For a batch size of 16 ⟨ti,mi⟩ pairs, a single epoch took

447 and 1, 745 seconds on average for training Phase 1 and Phase 2, respectively. With the

patience level of five epochs for the early termination criteria, Phase 1 and Phase 2 training

took 22 and 30 epochs to complete, respectively, resulting in a total of 14 hours of training.

Given that the Seer is generalizable, the one-time training of the model is reasonable. After

training, it takes Seer only 6.5 milliseconds on average to predict the passing or failing label

for a given pair of ⟨ti,mi⟩.
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CHAPTER 6: CONCLUSION

Test oracle automation has been one of the most challenging problems in the software

engineering community, yet it has received less attention compared to test input generation.

This work proposed Seer, a novel DL-enabled technique to move one step forward in

advancing automated test oracle constructions. Seer predicts a passing or failing verdict for

a given pair of ⟨ti,mi⟩ by learning the semantic correlation between inputs and outputs from

a high-quality and diverse dataset. Our experimental results show that the learned oracle is

accurate and efficient in predicting test results, and generalizable to the projects it has not

seen during training.

Currently, we are considering several directions for future work. Based on the promising

results of our produced domain-specific representations for code and tests, we will explore its

application in other software analysis tasks such as vulnerability detection, bug localization,

and program repair. Also, we are planning to expand Seer to system tests. System tests are

more complex and bigger than unit tests, which may entail changing the Seer’s architecture

to Graph Neural Networks (GNN) to better capture the code semantics and representations.
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