
Lost in Translation: A Study of Bugs Introduced by Large
Language Models while Translating Code

Rangeet Pan∗
rangeet.pan@ibm.com

IBM Research
Yorktown Heights, NY, USA

Ali Reza Ibrahimzada†∗
alirezai@illinois.edu

University of Illinois Urbana-Champaign
Champaign, IL, USA

Rahul Krishna
rkrsn@ibm.com
IBM Research

Yorktown Heights, NY, USA

Divya Sankar
divya.sankar@ibm.com

IBM Research
Yorktown Heights, NY, USA

Lambert Pougeum Wassi
lambert.pouguem.wassi@ibm.com

IBM Research
Yorktown Heights, NY, USA

Michele Merler
mimerler@us.ibm.com

IBM Research
Yorktown Heights, NY, USA

Boris Sobolev
bsobolev@ibm.com

IBM Research
Yorktown Heights, NY, USA

Raju Pavuluri
pavuluri@us.ibm.com

IBM Research
Yorktown Heights, NY, USA

Saurabh Sinha
sinhas@us.ibm.com

IBM Research
Yorktown Heights, NY, USA

Reyhaneh Jabbarvand
reyhaneh@illinois.edu

University of Illinois Urbana-Champaign
Champaign, IL, USA

ABSTRACT
Code translation aims to convert source code from one program-
ming language (PL) to another. Given the promising abilities of
large language models (LLMs) in code synthesis, researchers are
exploring their potential to automate code translation. The prereq-
uisite for advancing the state of LLM-based code translation is to
understand their promises and limitations over existing techniques.
To that end, we present a large-scale empirical study to investigate
the ability of general LLMs and code LLMs for code translation
across pairs of different languages, including C, C++, Go, Java, and
Python. Our study, which involves the translation of 1,700 code sam-
ples from three benchmarks and two real-world projects, reveals
that LLMs are yet to be reliably used to automate code translation—
with correct translations ranging from 2.1% to 47.3% for the studied
LLMs. Further manual investigation of unsuccessful translations
identifies 15 categories of translation bugs. We also compare LLM-
based code translation with traditional non-LLM-based approaches.
Our analysis shows that these two classes of techniques have their
own strengths and weaknesses. Finally, insights from our study
suggest that providing more context to LLMs during translation
can help them produce better results. To that end, we propose a

∗Both authors contributed equally to this research.
†Author was an intern at IBM Research at the time of this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639226

prompt-crafting approach based on the symptoms of erroneous
translations; this improves the performance of LLM-based code
translation by 5.5% on average. Our study is the first of its kind, in
terms of scale and breadth, that provides insights into the current
limitations of LLMs in code translation and opportunities for im-
proving them. Our dataset—consisting of 1,700 code samples in five
PLs with 10K+ tests, 43K+ translated code, 1,748 manually labeled
bugs, and 1,365 bug-fix pairs—can help drive research in this area.

CCS CONCEPTS
• General and reference → Empirical studies; • Computing
methodologies→ Neural networks.

KEYWORDS
code translation, bug taxonomy, llm

ACM Reference Format:
Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert
Pougeum Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh
Sinha, and Reyhaneh Jabbarvand. 2024. Lost in Translation: A Study of
Bugs Introduced by Large Language Models while Translating Code. In
2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE
’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3639226

1 INTRODUCTION
Code translation, source-to-source compilation, or transpilation, en-
tails transforming a piece of code from one programming language
(PL) to another, while preserving the original functionality. Code
translation has many use cases, such as modernizing enterprise

https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pan et al.

applications [30, 46, 49, 62, 68], migrating legacy software in pro-
prietary PLs to cloud-native applications implemented in general-
purpose PLs [26, 34, 36, 48, 59, 61, 89], and facilitating the training
of models for better code synthesis [28, 37, 69, 70]. Translating
the software/code to a modern PL can significantly reduce mainte-
nance effort, improve overall reliability, and boost non-functional
properties such as security and performance [1–5, 74].

Due to the importance and benefits of code translation, several
techniques have been developed to automate reliable translation
between different PLs [8, 9, 15, 29, 38, 53, 57, 65, 66, 73, 75, 79–
81], including those leveraging large language models (LLMs) for
code translation [35, 43, 65, 66, 72, 79]. Although prior research has
shown the potential of using LLMs for code translation, there is a
dearth of research on understanding and cataloging their limita-
tions for this task. This is an important undertaking because code
translation is a complex task that requires LLMs to understand code
syntax (to generate syntactically correct code) and semantics (to
preserve functionality during translation) simultaneously. However,
research has shown that without providing adequate context to
LLMs via prompt crafting, they may only serve as “next code token”
predictors, without understanding the overall task [22, 44, 82, 92].

In this work, we perform a large-scale empirical study to un-
derstand the promises and limitations of LLM-based code transla-
tion, and compare them with existing non-LLM-based translation
approaches. We also perform a preliminary investigation of how
providing more context about incorrect translations improves the
results. Our study answers the following research questions:

RQ1: Effectiveness in Code Translation (§3). (RQ1.1) How do
state-of-the-art general and code LLMs perform in code translation?
(RQ1.2) What are the outcomes of unsuccessful translations?
RQ2: LLM-Based Translation Bugs (§4). (RQ2.1) What are the
different types of underlying root causes (translation bugs) for
unsuccessful translations? (RQ2.2) How prevalent are these bugs
in unsuccessful translations? (RQ2.3) How do translation bugs in
real-world projects differ from those in crafted benchmarks?
RQ3: Comparison with Alternative Approaches (§5). How
do state-of-the-art non-LLM-based techniques perform in code
translation and what types of translation bugs do they introduce?
RQ4: Mitigating Translation Bugs (§6). To what extent do the
proposed prompt-crafting techniques resolve translation bugs?

To investigate the RQs, we collected 1,700 executable code sam-
ples from three well-known datasets (CodeNet [63], Avatar [23],
and EvalPlus [54]) and two open-source projects (Apache Com-
mons CLI [6] and Python Click [10]), covering five PLs (C, C++,
Go, Java, and Python). To perform translation, we selected seven
LLMs: GPT-4 [60], three open-source LLMs from the Hugging Face
Open LLM Leaderboard [13] (Llama 2 [16], TheBloke-Vicuna [20],
and TheBloke-Airoboros [19]), and three recent code LLMs (Star-
Coder [51], CodeGeeX [91], and CodeGen [58]).

We performed 43,379 translations across all LLMs, measuring
translation success against the tests provided with the code samples.
This produced 11.94% successful translations on average (median
5.3%), with GPT-4 (47.3% success rate) and StarCoder (14.5% success
rate) being the best-performing models (details in §3.1). On real-
world projects, the LLMs were largely ineffective, with success rates
of 8.1% for GPT-4 and 0% for the rest of the models.

We also conducted a systematic study to understand the root
causes of unsuccessful translations and create a taxonomy of trans-
lation bugs. The process involved eight human labelers and took 630
person-hours in total, focusing on 1,725 buggy translations by GPT-
4. It was conducted in two phases: in Phase 1, a draft taxonomy was
created from buggy translations for one language pair; in Phase 2,
the taxonomy was used for other language pairs and extended, if
needed, to label buggy translations (details in §4). The resulting bug
taxonomy is structured into 15 categories and five groups (details in
§4.1). Some notable findings are: (1) identifying suitable data type
in the target PL that preserves the source behavior is challenging,
(2) identifying equivalent APIs in the target language or imple-
menting the API functionality can introduce bugs, and (3) replacing
language-specific features, such as method overloading and annota-
tions, can be challenging, especially in real-world projects. Another
important dimension of this study is comparing LLM-based trans-
lation with existing non-LLM-based techniques, namely, CxGo [8],
C2Rust [9], and JavaToCsharp [15].1 The comparison shows that
LLM- and non-LLM-based translation techniques provide different
and unique advantages, suggesting that an ultimate solution for
code translation should combine both techniques (details in §5).

Our study reveals that, often, providing only the source code may
be insufficient for achieving correct code translation. To that end
(and also motivated by recent research on LLM-based bug repair [45,
84]), we propose an iterative prompting approach that incorporates
additional informative context in prompts corresponding to the
previously unsuccessful translation, including the code, stack trace,
errormessage from failing execution, and/or test input and expected
output from failing test cases. Our results show prompt crafting
increases the success rate by 5.5%, on average, across the studied
LLMs, with the largest improvement, of 12%, occurring for GPT-4
(details in §6). Although these results are encouraging, they indicate
considerable scope for improvement, likely through a combination
of program analysis techniques and LLMs.

To our knowledge, we are the first to (1) provide a systematic bug
taxonomy facilitating a deeper understanding of error modalities
in LLM-based code translation, (2) study translation of real-world
projects, (3) investigate the effectiveness of prompt crafting in miti-
gating translation bugs, and (4) compare non-LLM and LLM-based
translation approaches. Our key contributions are:
• A comprehensive evaluation of LLM-based code transla-
tion. We perform a large-scale evaluation of code translation
using multiple general and code LLMs. We consider the recently
released LLMs, and our evaluation includes real-world projects
in addition to three crafted benchmarks.

• A taxonomy of translation bugs. Our study offers the first
taxonomy of bugs introduced by LLMs during code translation.
We also compare the nature of these bugs in LLM and non-LLM-
based approaches to understand their strengths and weaknesses.

• Prompt crafting to enhance code translation. A set of heuris-
tics for prompt crafting that provides proper contexts to LLMs
to improve their effectiveness in code translation.

• Artifacts. Our artifacts, including manual labeling and automa-
tion scripts for evaluating LLMs, are publicly available [7].

1We also considered other approaches (mppSMT [57], Tree2Tree [29], and Sharpen [18])
but could not compare against them due to lack of tool/artifact availability (§5).

Lost in Translation: A Study of Bugs Introduced by Large Language Models while Translating Code ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Overview of subject LLMs. TB: TheBloke.
Modality Code Text

Models CodeGen CodeGeeX StarCoder GPT-4 Llama 2 TB-Airboros TB-Vicuna

Size 16B 13B 15.5B - 13B 13B 13B

Context Window 2048 2048 2048 8192 4096 2048 2048

Release Date May’23 Mar’23 May’23 Mar’23 Jul’23 May’23 May’23

2 EMPIRICAL SETUP
Subject LLM Selection. General LLMs are pre-trained on textual
data, including natural language and code, and can be used for a
variety of tasks. In contrast, code LLMs are specifically pre-trained
to automate code-related tasks. Due to the empirical nature of this
work, we were interested in assessing the effectiveness of both LLM
categories in code translation. For code LLMs, we selected the top
three models released recently (in 2023), namely CodeGen [58],
StarCoder [51], and CodeGeeX [91]. For general LLMs, we selected
the top three models with size 20B parameters or less from the
Hugging Face Open LLM Leaderboard [13].2 The constraint on the
number of parameters was imposed by our computing resources,
resulting in the selection of Llama 2 [16], TheBloke-Airoboros [19],
and TheBloke-Vicuna [20]. We also included GPT-4 [60] in our
study. Table 1 summarizes characteristics of the selected LLMs.

Subject PLs Selection. We used the following criteria to select
the subject PLs: (1) popularity of the language based on the TIOBE
index [21], (2) inclusion of different programming paradigms, e.g.,
procedural, object-oriented, and functional, and (3) availability of
high-quality datasets in the given PL. To make the manual effort
involved in taxonomy construction manageable, we selected five
PLs that met the inclusion criteria—C, C++, Go, Java, and Python.

Dataset Collection and Pre-Processing. To ensure the com-
prehensiveness of our findings and claims in understanding the
nature of LLM translation bugs, we were interested in datasets used
in prior studies as well as real-world projects. The former consists
of small programs, likely to be less challenging for LLMs to trans-
late, and the latter assesses the complexity of LLM translation in
real-world settings.

The first six columns of Table 2 present the selected datasets
and statistics about them (more information in the artifact web-
site [7]). These datasets are accompanied by test cases to validate
code translation. For CodeNet and Avatar, the tests are input data
and expected output, while EvalPlus and real-world projects have
unit tests (JUnit and pytest). For EvalPlus, we manually translated
and verified the corresponding pytests to JUnit tests. The trans-
lation of real-world projects never reached test execution, as it
produced syntactically incorrect code (more discussion in §3).

For real-world projects, we focused on Java and Python, the most
popular languages among our subject PLs. Our goal was to translate
reasonably complex and well-maintained software exclusively writ-
ten in Java or Python. To that end, we selected projects available in
both PLs providing APIs for command-line processing and selected
Apache Commons CLI [6] (Java) and Click [10] (Python). To fit the
source language code into the limited LLM context window, we
broke them down into classes and files and removed all comments.

Compute Resources. To perform inference on all subject LLMs,
we used 16 A100 80GB memory GPUs. For evaluating the generated

2The Open LLM Leaderboard ranking is quite dynamic, and our selection is drawn
from the ranking at the time of our experimentation.

$SOURCE_CODE

�� Unformatted source code
Translate the above

$SOURCE_LANG code to

$TARGET_LANG. Print only the

$TARGET_LANG code, end with

comment "|End-of-Code|".

CodeGeeX Other modelsGPT-4
code translation
$SOURCE_LANG:
$SOURCE_CODE
�� Unformatted source
code

$TARGET_LANG:
�� Code generated

$SOURCE_LANG:
$SOURCE_CODE
�� Unformatted source code
Translate the above $SOURCE_LANG

code to $TARGET_LANG.

$TARGET_LANG:
�� Code generated

Figure 1: Vanilla prompting templates.

translations, we used Python 3.10, g++ 11, GCC Clang 14.0, Java
11, Go 1.20, Rust 1.73, and .Net 7.0.14 for Python, C++, C, Java, Go,
Rust, and C#, respectively.

3 LLM-BASED CODE TRANSLATION
We prompted each subject LLMs with 6,197 translation problems
corresponding to 31 translation pairs shown in Table 2, i.e., 20 pairs
from CodeNet, eight pairs from Avatar, and one pair each for
EvalPlus, Commons CLI, and Click. Through RQ1, we evaluate the
effectiveness of LLMs in code translation (RQ1.1) and the outcomes
of incorrect translations (RQ1.2).

3.1 Effectiveness of LLMs in Code Translation
We refer to the LLM prompting in this experiment as vanilla prompt-
ing, where each prompt contains four pieces of information: (1)
instructions in natural language to perform the translation task, (2)
source language ($SOURCE_LANG), (3) target language ($TARGET_LANG),
and (4) the code to be translated ($SOURCE_CODE). We followed the
templates similar to those we found in the artifacts, papers, or tech-
nical reports associated with each model. Figure 1 shows the three
templates used for vanilla prompting of our subject LLMs. Our
prompt template for CodeGeeX slightly differs from what is used
in their paper [91]. Specifically, their prompt template includes im-
ports, class declaration, andmethod signature of the translation [11].
However, this is an unrealistic approach because such ground truth
does not exist and requires human involvement for each transla-
tion. Moreover, the code to be translated (from real-world projects
or crafted benchmarks) often contains several methods, making it
impossible to use the same template.

We consider a translation successful if it compiles, passes run-
time checks, and existing tests pass on the translated code. We do
not consider static evaluation metrics such as exact match, syntax
match, dataflow match [64], CodeBLEU [64], and CrystalBLEU [31]
because our goal is to validate (compile and execute) the transla-
tions. Static metrics can also be misleading in code synthesis [27]—
i.e., LLMs may achieve reasonably high numbers for these metrics,
but generate code that cannot be executed due to compilation or
runtime errors [23, 27]. The last seven columns of Table 2 show
the detailed results of vanilla prompting of subject LLMs for code
translation. We next discuss our key observations.
• Except for GPT-4 and StarCoder, all other models performed
poorly. The biggest surprise here is CodeGeeX, a model trained
explicitly for code translation. We believe this result is because, as
mentioned, we excluded information about the translated code (im-
ports, class declaration, and method signature) in the prompt. Such
information is typically not available and non-trivial to compute.
(To check the correctness of our results, we repeated their experi-
ments with their template and ours, which resulted in the pass@1
dropping from 25.6% to 0.02% on their dataset, HumanEval-X.)

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pan et al.

Table 2: Performance of subject LLMs in translating code from different studied datasets. The best performance by general and
code LLMs are highlighted in teal and violet, respectively. The final performance is computed over the average of each dataset.

Dataset Language Samples #Tests Language #Translations % Successful TranslationsSource Source Target
CodeGen CodeGeeX StarCoder GPT-4 Llama 2 TB-Airoboros TB-Vicuna

CodeNet [63]

C 200 200 C++, Go, Java, Python 800 23.4% 14.9% 42.0% 83.0% 14.9% 18.8% 4.4%
C++ 200 200 C, Go, Java, Python 800 14.0% 3.6% 39.1% 80.0% 9.5% 8.3% 3.4%
Go 200 200 C, C++, Java, Python 800 14.3% 5.9% 42.0% 85.5% 16.9% 6.6% 0.9%
Java 200 200 C, C++, Go, Python 800 21.3% 10.3% 30.3% 81.3% 13.9% 6.5% 0.1%

Python 200 200 C, C++, Go, Java 800 17.5% 7.3% 33.3% 79.9% 11.0% 6.5% 1.0%
Total/Average (CodeNet) - 1,000 1,000 - 4,000 18.1% 8.4% 37.3% 82.0% 13.2% 9.3% 2.0%

Avatar [23] Java 249 6,255 C, C++, Go, Python 996 8.1% 1.8% 11.9% 70.8% 1.8% 5.0% 0.0%
Python 250 C, C++, Go, Java 1, 000 3.8% 1.6% 14.2% 52.2% 4.7% 0.9% 0.9%

Total/Average (Avatar) - 499 6,255 - 1,996 5.9% 1.7% 13.0% 61.5% 3.2% 3.0% 0.4%
EvalPlus [54] Python 164 2,682 Java 164 16.5% 3.7% 22.0% 79.3% 1.2% 14.0% 7.9%
Commons CLI [6] Java 22 310 Python 22 0.0% 0.0% 0.0% 13.6% 0.0% 0.0% 0.0%
Click [10] Python 15 611 Java 15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Total/Average (All) - 1,700 10,858 - 6,197 8.1% 2.8% 14.5% 47.3% 3.5% 5.3% 2.1%

Table 3: Breakdown of the unsuccessful translations produced by subject LLMs based on outcome. All values are in %.
Source Language C C++ Go Java Python

Target language C++ Go Java Python C Go Java Python C C++ Java Python C C++ Go Python C C++ Go Java Total

Compilation Errors 68.9 93.5 76.4 56.9 93.2 94.6 77.0 61.6 86.7 83.3 82.4 55.9 82.4 78.4 96.6 57.4 79.9 73.4 86.0 72.4 77.8

Runtime Errors 9.4 2.3 10.7 21.9 0.1 1.2 11.2 22.9 0.2 0.2 12.7 19.3 1.2 0.4 0.8 27.1 0.4 0.4 10.0 14.8 8.4

Functional Errors 20.5 3.7 13.0 20.6 6.7 4.1 11.7 15.1 12.9 16.3 4.7 24.6 15.8 19.9 2.5 15.1 19.0 24.8 3.9 12.5 13.4

Non-terminating Execution 1.3 0.4 0.0 0.5 0.0 0.2 0.1 0.4 0.2 0.2 0.2 0.2 0.7 1.3 0.1 0.3 0.8 1.3 0.1 0.3 0.4

• There is a strong correlation between the average number of tests
per translation sample and unsuccessful translation (correlation
coefficient 𝑟 ranging from 0.64 to 0.85 for all models). That is, the
more rigorous the existing test suite, the better it can evaluate if a
translation preserves functionality.
• There is no consistent pattern between unsuccessful translations
and source/target language, but translating to Go results in more
compilation errors due to its strict syntax constraints, e.g., forbid-
ding unused variables or imports.
• The LLMs fail to translate real-world projects. This is mainly
because crafted benchmark programs are simpler, without complex
dependencies or use of language features, e.g., annotations, inheri-
tance, etc. Moreover, in a real-world setting, translating files/meth-
ods in isolation, even if successful, may fail at the project level.
That said, further manual investigation showed that for the Com-
mons CLI, three out of 22 translated files could be compiled using
py_compile [17]. These simple classes consist of (1) an exception
class with only one method, (2) an interface with two method dec-
larations, and (3) a utility class with two simple methods.

3.2 Outcome of Unsuccessful Translations
The previous research question shows that most of the subject LLMs
are yet to achieve a reasonable performance for code translation,
even on crafted benchmarks, let alone real-world projects. At the
next step, we were interested to understand if this is due to a lack of
understanding of code syntax or semantics by LLM. To do this, we
classify unsuccessful translations based on their error outcome: (1)
Compilation Error, where translated code cannot be compiled, (2)
Runtime Error, where translated code compiles but fails at runtime
with an exception, (3) Functional Error, where the translated code
compiles and executes successfully but results in test failure, and
(4) Non-terminating Execution, where the translated code compiles
and executes, but does not terminate (encountering an infinite loop
or waiting on user input).

Cod
eG

en

Cod
eG

ee
X

St
ar

Cod
er

GPT-4

Lla
ma-2

TheB
lok

e

Airo
bo

ro
s

TheB
lok

e

Vicu
na

0

20

40

60

80

100

Tr
an

sl
at

io
ns

 (%
)

Compilation Error

Runtime Error

Functional Error

Successful Translation

Legend

Figure 2: Outcome of code translations using subject LLMs.
Figure 2 and Table 3 show the results of this experiment for each

model—accumulated for all subject PLs—and for each subject PL—
accumulated for all subject models, respectively. From these results,
we observe that most unsuccessful translations result in compilation
errors (77.8%), meaning both general and code LLMs have difficulty
understanding code syntax. Further breakdown of the results per
PLs shows that Go and C++ have comparatively stricter syntax,
while it is easier for LLMs to generate syntactically correct Python
code.3 The next most common effect of unsuccessful translation is
a functional error (13.4%), demonstrating that often translated code
does not preserve the behavior of the source program.

4 LLM-BASED TRANSLATION BUGS
To understand the nature of translation bugs, we performed a deep
analysis by manually investigating the root cause of unsuccessful
translations. Through the following three research questions, we
introduce our comprehensive taxonomy of translation bugs (RQ2.1),
investigate the prevalence and distribution of each bug category
across unsuccessful translations (RQ2.2), and discuss the peculiar
characteristics of bugs in real-world projects (RQ2.3).
3We used py_compile [17] to check syntax-related bugs in Python.

Lost in Translation: A Study of Bugs Introduced by Large Language Models while Translating Code ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Bug Type
Syntactic and semantic

di�erence between
languages

Dependency &
logic bugs Others

Violating
target

language
requirements

Duplicating
source

syntax to
target

language

Mismatch of
API behavior

between
source and

target

Incorrect
use of

operator

Missing
library

imports

Missing
de�nition

Incorrect
loop and

conditional
statements

Inclusion
of logic not
in source

code

Removal of
logic from
the source

code

Mismatch
of behavior

a�er
replacing
API call

Incorrect
data type

Incorrect
input

parsing

Output
forma�ing

Bugs due to
di�erences of
language syntax
and semantics

Duplicating
source syntax
to target
language,
where it is not
supported

Bugs due to
di�erence in
behavior of
equivalent
APIs in two
languages

Behavior of
operators in
di�erent
languages
o�en
di�erent

Bugs due to
missing library
�les

O�en LLM
refers code
that is not
implemented

Bugs due to
wrong loop
syntax,
condition, etc.

Inclusion of
logic in the
translated
code that was
not in the
source code.

Logics that are
present in the
source code
but LLM did
not translate.

Behavioral
mismatch a�er
LLM implements
the logic of the
API in the
source

Bugs due to
mismatch of
data types

Bugs due to
mishandling
the input
parsing
process

Logic of the
translated
code is correct
but output
forma�ing is
di�erent

Bugs related to syntax
and semantics-related
di�erences

Data-related
bugs

Bugs associated with
the input and output
data

Bugs due to missing
dependency
and incorrect logic
implementation

Model
speci�c

constraint

Restriction due to
model speci�c

limitations

Figure 3: Taxonomy of bugs introduced while translating code using LLM. The “other” category/group is not shown here.

4.1 Taxonomy of Translation Bugs
Our initial investigation showed that GPT-4 is the best-performing
model and compared to others, its translations exhibit a variety of
quality bugs worth investigating. To manage the manual effort for
understanding and labeling bugs for building the taxonomy, we
focused on 1,748 unsuccessful translations from GPT-4.

4.1.1 Methodology. The manual construction of the taxonomy
involved eight human labelers, who are researchers or software
engineers in the industry, and involved unsuccessful translations
from all 31 translation pairs in Table 2. We built the taxonomy in
two phases. In the first phase, we used the CodeNet Java-to-Python
translations. Each labeler created a taxonomy independently by
examining the unsuccessful translations. Then, we combined the
individual taxonomies to create a consolidated taxonomy, which
served as the initial taxonomy for phase 2. In the second phase, each
of the remaining 30 translation pairs was examined by two labelers
to assign bug categories to unsuccessful translations. Whenever a
new category came up (i.e., a bug could not be covered by the exist-
ing categories in the taxonomy), the entire team met to discuss the
new category, add it to the taxonomy, and re-label the affected bugs.
After completing their labeling tasks, the two labelers assigned to a
translation pair met to discuss their labeling, resolve discrepancies,
and create the final labeling for the translation pair. The entire
exercise took about 630 person-hours and produced a taxonomy
with 15 bug categories organized into five groups (“model specific
constraints” group does not have any sub-category). In the rest of
this section, we discuss the taxonomy groups and bug categories
together with illustrative examples.

4.1.2 Syntactic and semantic differences between the source and
the target languages. There are five bug categories in this group
that relate to the failure of an LLM in appropriately handling the
syntactic or semantic differences between PLs.

A1: Violating target language requirements. Each PL has its
own set of rules that the code must adhere to. For example, in Java,
any executable code must be wrapped in a method within a class,
whereas in Python, this is not a requirement. Similarly, unused
imports in Go result in compilation errors, but not in other PLs.

A2: Duplicating source syntax to the target language. LLMs
often copy the source PL syntax even if they are not available in
the target PL. In an unsuccessful translation below from C++ to Go,
the subject LLM does not replace atan2l API (which is specific to
C++ and does not exist in Go) with an appropriate equivalent.

const ld PI = atan2l(0, -1); # Original C++ code
PI = atan2l(0, -1) # Incorrect Go code

A3: Mismatch of API behaviors in the source and target.
Library APIs are frequently used in programs in any PL. During
translation, API calls in the source need to be either mapped to
equivalent API calls in the target PL or implemented from scratch.
In the former case, we noted that LLMs often map source APIs incor-
rectly to the target PL. The following code fragment illustrates such
an example where the Java String.substring() API is incorrectly
mapped to the Go strings.IndexByte() API method.

S.substring(i, i + 1) # Original Java code (returns String)
strings.IndexByte(S, i) # Incorrect Go code (returns Int64)

A4: Incorrect use of operators. The supported operators and
their syntax can vary among PLs. For example, // in Python repre-
sents floor division, for which Java has no corresponding operator.
To achieve that behavior in Java, a division must be followed by a
call to Math.floor(). LLMs can fail in translating such cases.

i = i // 10; # Original Python code (floor division)
i = i / 10; # Incorrect Java code (division)

4.1.3 Dependency and logic bugs in the translated code. These bugs
pertain to incorrect dependencies and logic of translated code.

B1: Missing library imports. Import statements are used to
load libraries and/or application classes/modules used in code. In
several unsuccessful translations, we found that the translated code
had missing or incorrect imports.

B2: Missing definition. LLMs can omit definitions/implemen-
tation of data types, methods, etc. In the unsuccessful translation
below, the original C++ code, main() calls method solve() that is
implemented in the same source file. However, after translation to
Go, although the call to solve() remains, its definition is removed.

void solve(){...} # Original C++ code
signed main(){...solve();} # Incorrect Go code

B3: Incorrect loop and conditional statements. This category
covers bugs in translating loops and conditional statements. The
following code illustrates the incorrect translation of a Java loop
to Python array slicing, resulting in an off-by-one error in the
translated code, where the sum excludes the value of x[200010-k-1].

for(int i = 0; i <= 200010 - k - 1; i++) ans += x[i]; # Java code
ans = sum(x[:200010 - k - 1]) # Incorrect Python code

B4: Inclusion of logic not in source code. LLMs can generate
code that is unrelated to any logic in the source program, thereby,
causing the translated code to diverge from the source behavior. In
the following example, max is initialized to -1 in the source. However,
after translation, it is initialized to a different value; the LLM thus
adds logic that does not exist in the source program.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pan et al.

int max = -1; # Original C code
max_h = max(h) # Incorrect Python code

B5: Removal of logic in the source code. LLMs often fail
to translate part of the source program correctly. For example, in
several cases lines such as #define MAX 101 in C are removed.

B6: Mismatch of behavior after replacing API call. These
bugs occur when a source API call is translated to custom logic
instead of an equivalent API in the target PL (A3 bugs).

return Collections.unmodifiableList(requiredOpts); # Java code
return self.required_opts # Incorrect Python code

The example above from Commons CLI shows an incorrect trans-
lation of Java Collections.unmodifiableList() that returns an im-
mutable list to Python, where the returned list is mutable.

4.1.4 Data-related Bugs. Data plays an integral role in the code.
We found various bugs caused by wrong assumptions about the
input data, mismatch of data types, etc.

C1: Incorrect data type. This category of bugs pertains to
incorrect types assigned to variables. The following example, taken
from the translation of Commons CLI to Python, illustrates an
incorrect type assignment to a field.

public static Class<File[]> FILES_VALUE=File[].class; # Java code
FILES_VALUE = List[os.path] # Incorrect Python code

C2: Incorrect input parsing. Programs that read data from the
input stream (i.e., stdin or other sources expect the data to be in a
specific format. Such programs are often translated incorrectly, as
illustrated by the following Python-to-C translation. The second
input line contains three integer values all of which are read into
an array in the Python code (line 6), whereas the C code reads only
two values and assigns 0 for the third value (lines 2–4). This causes
the wrong result to be computed in line 6.

0 ----- Input -----
1 2
2 3 5 2
3 4 5
4 ------ Source Code ------
5 N = int(input())
6 A = [.. input().split()]
7 ...
8 d = min(A[i+1], B[i])

0 ----- Translated Code -----
1 int A[N+1], B[N], N;
2 for(int i=0; i<N; i++) {
3 scanf("%d", &A[i]);}
4 A[N] = 0;
5 . . .
6 d = A[i+1] < B[i] ? A[i+1] :

B[i];
7 ...

C3: Output formatting. We found that often, even if the trans-
lated code logic is correct, the output is formatted differently. In
the following example, the source Java code prints ‘H’ followed
immediately by an integer value, whereas the translated Python
code prints a space between ‘H’ and the integer value.

System.out.print("H"); System.out.println(Y - 1988); # Java code
print("H", Y - 1988) # Incorrect Python code

4.1.5 D: Model-Specific Bugs. Some bugs are specific to the design
of the LLMs used. For instance, having natural language in-between
the code, exceeding token size, etc., causing compilation errors or
no output to be generated.We also observed a group of unsuccessful
translations—which we refer to as E: Others—related to our experi-
ment setup (e.g., memory issues). Given that they do not represent
LLM-introduced bugs, we do not include them in the taxonomy.

4.2 Prevalence of LLM-based Translation Bugs
We now present the results for RQ2.2, showing the prevalence of
bugs in different categories of our taxonomy. Among the 6197 at-
tempted translations over 31 language pairs (Table 2), there were
1558 translation failures. We manually checked and labeled these
failures to identify 1748 bugs. In many cases, an unsuccessful trans-
lation has multiple bugs that belong to different categories; in these
cases, the translation gets multiple labels. Table 4 presents detailed
results on the prevalence of translation bugs. In this section, we
delve deeper into the characteristics and prevalence of these bugs.

Finding 1: More than one-third (33.5%) of the translation bugs
are data-related bugs.

As the data for bug group C in Table 4 show, a large proportion
of the LLM-introduced bugs is related to data types, parsing input
data, and output formatting issues, together accounting for 33.5%
of all bugs. These bugs are particularly prevalent for Python to C,
C++, and Go translations, constituting over 43%, 33%, and 37% of
the bugs, respectively, in those translations. Within data-related
bugs, our manual investigation found several unique patterns.

Finding 1a:Among the data-related bugs, most (54% of the data-
related bugs and 18.1% of the total bugs) are due to incorrect
parsing of inputs.

As discussed in §4.1.4, programs that take external inputs contain
input-parsing logic, assuming the data to adhere to certain formats,
and LLMs often make mistakes while translating this logic; the C2
bug category example in §4.1.4 illustrates this. A major reason for
the prevalence of this bug is that two of our datasets (CodeNet and
Avatar) consist of programs that read data from the input stream.
For EvalPlus and the real-world projects, the occurrence of this bug
is lesser (one for EvalPlus and none for the real-world projects).

Finding 1b: Choosing the correct data type in the target PL is
a crucial step that accounts for 34.3% of all data-related bugs
and 11.5% of all bugs.

Assignment of correct data types in the translated code (11.5%
of translation bug) is a major challenge. These bugs occur due to
incorrect choice of the data type, differences between behaviors of
equivalent data types across PLs, and differences in type systems
of the source and target PLs. The example for the C1 bug category
in §4.1.4 shows an instance of wrong choice of data type in the
target PL, where the Java type Class<File[]> is converted to list
of path objects in Python. To illustrate an example of equivalent
types with different behaviors in source and target PLs, consider
the code fragments shown below, where the function mean_a_d() in
the Python code (left) takes a list of float as input. The test case for
the function (line 2) uses a large number as test data. The translated
code, shown on the right, looks correct and maps Python float to
the Java Float type. However, the equivalent Java test case (line 2
on right) fails because of a fundamental difference between Python
float and Java Float: the former uses 64-bit precision whereas the
latter uses 32-bit precision. The Java code thus cannot handle the
large test data value, which works fine in Python.

Lost in Translation: A Study of Bugs Introduced by Large Language Models while Translating Code ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 4: Types of bugs introduced during code translation by GPT-4 and their occurrences. This table includes all the subject
datasets including the real-world projects. All values are in %.

Source Language C C++ Go Java Python
TotalTarget Language C++ Go Java Py C Go Java Py C C++ Java Py C C++ Go Py C C++ Go Java Total

A1: Violating target language requirements 23.1 78.2 57.7 20.0 25.9 58.5 23.5 11.3 8.3 37.5 3.6 10.0 20.4 2.7 55.8 4.6 14.5 5.8 41.4 11.2 24.3
A2: Duplicating source syntax to the target language 0.0 0.0 0.0 0.0 18.5 3.1 5.9 0.0 2.8 4.2 3.6 2.5 0.9 6.8 0.6 1.1 4.6 1.2 1.8 2.9 2.4
A3: Mismatch of API behaviors in the source and target 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 11.1 0.0 0.0 2.5 4.4 5.5 3.5 16.1 0.0 2.9 0.5 1.0 3.3
A4: Incorrect use of operator 0.0 0.0 0.0 2.2 0.0 0.0 2.9 0.0 0.0 0.0 3.6 0.0 0.0 1.4 0.0 0.0 1.2 0.0 0.0 2.4 0.6
A: Syntactic and semantic differences between languages 23.1 80.0 57.7 22.2 44.4 61.5 32.4 11.3 22.2 41.7 10.7 15.0 25.7 16.4 59.9 21.8 20.2 9.9 43.6 17.6 30.5
B1: Missing library imports 0.0 0.0 7.7 0.0 0.0 1.5 0.0 0.0 8.3 0.0 0.0 0.0 3.5 5.5 1.2 8.6 7.5 32.0 2.7 22.4 8.6
B2: Missing definition 0.0 0.0 7.7 0.0 11.1 3.1 14.7 1.9 13.9 4.2 0.0 0.0 2.7 4.1 0.0 0.0 3.5 5.8 0.5 0.0 2.4
B3: Incorrect loop and conditional statements 15.4 1.8 3.8 2.2 7.4 4.6 5.9 3.8 0.0 8.3 0.0 0.0 1.8 0.0 1.7 4.6 5.2 2.3 1.8 0.0 2.6
B4: Inclusion of logic not in the source 0.0 1.8 3.8 4.4 3.7 3.1 0.0 1.9 13.9 12.5 3.6 5.0 5.3 1.4 0.0 2.3 5.8 4.1 0.9 4.9 3.4
B5: Removal of logic from source 0.0 0.0 3.8 8.9 3.7 3.1 11.8 13.2 5.6 0.0 3.6 2.5 8.8 2.7 1.2 2.9 2.3 1.7 0.9 3.4 3.3
B6: Mismatch of behavior after replacing API call 0.0 0.0 0.0 0.0 3.7 1.5 0.0 1.9 0.0 4.2 21.4 2.5 9.7 9.6 2.9 0.6 5.2 2.3 5.0 3.9 3.8
B: Dependency & logic bugs in the translated code 15.4 3.6 26.9 15.6 29.6 16.9 32.4 22.6 41.7 29.2 28.6 10.0 31.9 23.3 7.0 19.0 29.5 48.3 11.8 34.6 24.2
C1: Incorrect data type 7.7 1.8 0.0 11.1 7.4 15.4 26.5 1.9 27.8 4.2 7.1 7.5 8.8 8.2 7.6 0.6 21.4 15.7 8.2 21.5 11.5
C2: Incorrect input parsing 23.1 7.3 11.5 40.0 7.4 4.6 0.0 60.4 5.6 0.0 14.3 60.0 9.7 19.2 11.6 32.2 11.0 15.7 24.1 10.2 18.1
C3: Output formatting 23.1 0.0 0.0 4.4 0.0 0.0 0.0 1.9 0.0 0.0 7.1 0.0 1.8 9.6 3.5 5.2 10.4 1.7 5.0 2.4 3.9
C: Data-related Bugs 53.8 9.1 11.5 55.6 14.8 20.0 26.5 64.2 33.3 4.2 28.6 67.5 20.4 37.0 22.7 37.9 42.8 33.1 37.3 34.1 33.5
D: Model specific constraints 7.7 7.3 3.8 4.4 11.1 1.5 8.8 1.9 0.0 0.0 25.0 0.0 8.0 4.1 9.9 14.4 2.9 2.3 5.9 7.8 6.6
E: Others 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 2.8 25.0 7.1 7.5 14.2 19.2 0.6 6.9 4.6 6.4 1.4 5.9 5.1

0 ------ Source Code ------
1 def mean_a_d(numbers: List[

float]) -> float:
2 self.assertEqual(0.0,mean_a_d

([1e+308]))
3 ...

0 ----- Translated Code -----
1 public static float meanAD(List<

Float> n) ...
2 void testCode() {assertEquals

(0.0, meanAD(Arrays.asList
(1e+308f)));}

Incorrect data type bugs can also occur due to differences be-
tween the type systems of the source and target PLs. For instance,
while translation code in a dynamically typed PL (e.g., Python) to a
statically typed PL (e.g., Java), preserving the behavior of source
types can be challenging.

Finding 2: A significant proportion, 30.5%, of the translation
bugs occur due to syntactic and semantic differences between
the source and target PLs; almost 80% of these (24.3% of all bugs)
are caused by violation of target language requirements.

Almost one-third of the bugs occur due to reasons, such as violat-
ing target language requirements, duplicating source syntax to the
target PL, behavioral differences of APIs and operators, etc. §4.1.2
illustrates several bugs in this group. For instance, the following
translated code violates syntactic constraints of the target language:
the variable named ll in the Python code (left) is translated verba-
tim to C++, which results in a compilation error as ll is a reserved
keyword in C++ (used for long-long data).

0 ------ Source Code ------
1 ll = - 10 ** 18 - 1

0 ----- Translated Code -----
1 ll ll = -1e18 - 1;

Another example of such a bug is the declaration order of meth-
ods, where some languages (e.g., Go) permit methods to call another
declared subsequently, whereas others (e.g., C++) restrict calls to
previously declared methods only. Thus, maintaining the wrong
declaration order of methods could result in compilation errors.

Finding 2a: Replacing an API call with another API call in the
target PL can result in bugs.

As illustrated for the A3 bug category in §4.1.2, LLMs can incor-
rectly map source APIs to the APIs available in the target language.
Table 4 shows that 3.3% of all bugs fall in this category. The fol-
lowing example illustrates an API-mismatch bug, where the LLM
replaces the Python accumulate() API with IntStream.concat() in
Java, which can be used in an equivalent manner. However, the
LLM erroneously adds reduce(count).getAsInt() to reduce the re-
sult to an integer value instead of converting the return value of
IntStream.concat(), an integer stream, to a list/array of integers.

This results in an incorrect return value in the two programs: a list
of integers in Python and an integer in Java.

list(accumulate([0] + list(range(1,n)), count)) # Python code
int[] cumsum = IntStream.concat(IntStream.of(0), IntStream.range(1,

n)).reduce(count).getAsInt(); # Incorrect Java code

Finding 3: 24.2% of the translation bugs are related to incorrect
code logic and missing dependencies in the target PL, with
missing imports being the dominant category.

LLMs can often translate the source logic incorrectly or miss
dependencies. Missing imports is the most frequently occurring
bug category (35.5% of the bugs in the group and 8.6% of the bugs
overall). The other five categories in this group occur in roughly
comparable numbers, ranging from 2.4% to 3.8% of the overall bugs.

4.3 Translation Bugs in Real-world Projects
Many of the bugs seen in the crafted benchmarks translation also
occurred while translating Commons CLI and Click. Key among
these are: removal of logic in the source (e.g., source methods and
field initialization not translated), inclusion of logic not in source
(e.g., implementation added for a stubbed method), missing imports,
mismatch in API behaviors after translation, mismatch of behaviors
after replacing API calls and incorrect data types.

However, real-world applications have much more complex code
than crafted benchmarks, making them much harder for LLMs to
translate. We found nine instances (all from Click) where the trans-
lated files contained natural-language text explaining the transla-
tion of the source file is infeasible or a non-trivial task for GPT-4.
Some others included partial translations of methods in the class,
leaving the rest untranslated (translation bug B5). This shows that
LLMs, even with longer context windows, cannot capture depen-
dencies between the methods implementing the class logic.

Finding 4: Real-world applications pose complex challenges
for code translation, such as handling method overloading, in-
heritance, and code annotations, not seen in crafted datasets.
We found examples of language features used in real-world ap-

plications that LLMs can struggle with translating.
0 ------ Source Code ------
1 public Options addOption(final Option opt) { ... }
2 public Options addOption(final String opt, final boolean hasArg,

final String description) { ... }

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pan et al.

0 ----- Translated Code -----
1 def add_option(self, opt):...
2 def add_option_arg(self, opt, has_arg, description):...

For instance, Commons CLI uses method overloading frequently.
GPT-4 translates these to Python in different ways, some of which
are correct translations, whereas others are erroneous. For an exam-
ple of the latter, there are cases where GPT-4 translates overloaded
Java methods by renaming them in Python to avoid overloaded
method names, leaving open the work of suitably renaming all call
sites to the methods to preserve the call relations.

In another instance, overloaded methods are translated to meth-
ods with the same name, which results in broken functionality
because only the last method is available as per the Python seman-
tics, with the previous method definitions overridden.

0 ------ Source Code ------
1 public static OptionBuilder

hasArg() { ... }
2 public static OptionBuilder

hasArg(final boolean
hasArg) { ... }

0 ----- Translated Code -----
1 @staticmethod
2 def has_arg():...
3 @staticmethod
4 def has_arg(has_arg):
5 ...

Commons CLI and Click also illustrate the challenges posed by
the use of decorators (for adding new functionality to an existing
object without modifying its structure) and annotations (for adding
metadata to code). For example, Click uses the @contextmanager

decorator on a method to wrap it with a resource manager. This
needs to be translated appropriately in Java to ensure automatic
resource release. We also observed cases of broken inheritance
relations (resulting in missing behaviors/states) in translated code
and incorrect translation of exception handling.

Finding 5: The effectiveness of code translation can vary con-
siderably based on the characteristics of the source and tar-
get PLs, such as the type system, available programming APIs,
metaprogramming support via decorators or annotations, etc.

There is a clear pattern of GPT-4 performing much better in
translating Commons CLI to Python than Click to Java. This is
evident from not only the occurrences of successful translations
(three for Commons CLI vs. none for Click) and degenerate code-
generation instances (nine for Click vs none for Commons CLI),
but also the translation bugs observed. This could be attributed to
project-specific complexity characteristics (e.g., the largest source
file has 2, 436 NCLOC in Click and 358 NCLOC in Commons CLI),
and it is hard to generalize from limited observations, but language
features and the available API ecosystem for a PL can have a con-
siderable impact on the success of code translations. For example,
Python-to-Java translations can be more error-prone than Java-to-
Python translations, in general, because going from a dynamic type
system to a static one can be harder for an LLM to reason about.

Finding 6: Although the translation bug categories remain the
same, occurrences of bug instances and their distribution vary
between crafted benchmarks and real-world projects.

The bug categories in our taxonomy are broad enough to rep-
resent translation bugs in real-world projects. However, their fre-
quencies considerably differ. The most prevalent bugs in real-world
projects are model-specific constraints (29.4%), missing imports
(27.4%), and the removal of logic from the source code (15.7%),

Table 5: Successful translation (in %) of non-LLM and LLM
approaches. The top-2 tools are highlighted in teal and violet.

Dataset SL TL C
xG

o
C
2R

us
t

Ja
va
2C

#
C
od

eG
en

C
od

eG
ee
X

St
ar
C
od

er
G
PT

-4
Ll
am

a
2

TB
-A

TB
-V

CodeNet
C Rust - 95.0 - 0.0 0.0 10.5 61.0 0.5 0.5 0.0
C Go 62.3 - - 33.0 0.0 12.5 72.5 5.0 5.5 11.0

Java C# - - 0.0 0.5 1.0 26.5 49.0 1.5 1.0 4.0
Avatar Java C# - - 0.0 0.0 0.0 10.4 59.2 2.0 0.8 0.4

* {S, T}L: {Source, Target} Language. Data are in %. TB-{A, V}: TB-{Airoboros, Vicuna}.

whereas for crafted benchmarks, data, syntactic, and semantic dif-
ferences are more common. Moreover, the nature of these bugs is
also different. For instance, in most cases, LLM’s context window
is not large enough to fit both project files and translated code,
resulting in model-specific constraint bugs. Second, LLMs lack spe-
cific application knowledge, such as the project structure, external
dependencies, and declarations outside the translation scope, i.e.,
the translated file. The lack of a holistic view of the application can
cause bugs such as missing imports and removal of source code
logic. Moreover, this limitation can cause inconsistencies in the
translated code, e.g., as illustrated for Finding 4, renaming over-
loaded methods requires all the related call sites to be updated.

5 LLM- VS. NON-LLM-BASED TRANSLATION
This section compares LLM- and non-LLM-based code translation
techniques concerning their effectiveness and the differences in
translation bugs. Non-LLM-based techniques are either (1) tran-
spilers (i.e., source-to-source compilers) or cross-lingual code ex-
ecutors for translation (e.g., C2Rust [9], CxGo [8], Sharpen [18], and
JavaToCSharp [15]), or (2) learning-based, which leverage neural
machine translation techniques to convert a code from one program-
ming language to another (e.g., mppSMT [57] and Tree2Tree [29]).

Among the mentioned tools, we used CxGo [8] and C2Rust [9]
to translate C code in our CodeNet dataset to Go and Rust, and
JavaToCSharp [15] to translate Java code in CodeNet and Avatar
datasets to C#. Accordingly, we used our seven subject LLMs to
translate code for all three PL pairs. Table 5 illustrates the success
rate of both LLM and non-LLM approaches.

Java to C#. We observed that none of the translated code using
JavaToCSharp can compile and, in fact, require heavy rewriting
of library APIs (e.g., System.in and java.util.Scanner). Developers
of JavaToCSharp confirmed that this tool is not built to perform
full code migration. On the contrary, GPT-4 and StarCoder achieve
54.1% and 18.45% success rate in translating Java code to C#.

Finding 7: For C to Go, the best-performing LLM, i.e., GPT-4,
achieves 10% higher success rate than non-LLM-based approach,
whereas, for C to Rust, the non-LLM-based approach translates
95% of the code (34% better than best-performing LLM).

C to Go. CxGo transforms the C code into a common abstract
syntax tree (AST) that represents both C and Go constructs. It then
converts the AST into Go for translation. When compared to LLMs,
we found that CxGo outperforms all the open-source models with
an accuracy of 62.25%, but falls 10% behind GPT-4. The biggest
caveat is that executing code generated by CxGo requires specific
libraries, i.e., stdio for I/O operations instead of a more generic fmt
library. In terms of the effect of the incorrect translation, 46.7% and
53.3% are due to compilation and runtime errors. Whereas, for the

Lost in Translation: A Study of Bugs Introduced by Large Language Models while Translating Code ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(b) C Code Transpiled with C2Rust with annotations on safety issues.

(a) C Code Translated to Rust by GPT-4

fn main() {
let mut x = String::new();
let mut y = String::new();
io::stdin().read_line(&mut x).expect("Failed to read line");
io::stdin().read_line(&mut y).expect("Failed to read line");
let x: i32 = x.trim().parse().expect("Please type a number!");
let y: i32 = y.trim().parse().expect("Please type a number!");
println!("{} {}", x*y, 2*x + 2*y); }

1.
2.
3.
4.
5.
6.
7.
8.

#![allow(dead_code, mutable_transmutes, unused_assignments, unused_mut)]
extern "C" {

fn printf(_: *const libc::c_char, _: ...) -> libc::c_int;
fn scanf(_: *const libc::c_char, _: ...) -> libc::c_int; }

unsafe fn main_0() -> libc::c_int {
let mut x: libc::c_int = 0;
let mut y: libc::c_int = 0;
x = 0 as libc::c_int;
y = 0 as libc::c_int;
scanf(b"%d\0" as *const u8 as *const libc::c_char,

&mut x as *mut libc::c_int);
scanf(b"%d\0" as *const u8 as *const libc::c_char,

&mut y as *mut libc::c_int);
printf(b"%d %d\n\0" as *const u8 as *const libc::c_char,

x * y, 2 as libc::c_int * x + 2 as libc::c_int * y,);
return 0 as libc::c_int; }

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

1

2

3

4

5

Figure 4: Comparative analysis of C-to-Rust code translation.

best-performing LLM, i.e., GPT-4, 76.3%, 12.7%, and 9.1% errors are
related to compilation, test, and runtime failures.

With a further investigation on the type of translation bugs, we
found thatmost GPT-4 translation bugs (71.8%) are related to unused
imports, variables, and other target language-specific violations,
followed by incorrect input parsing (10.3%). Whereas, with CxGo,
the majority of the bugs are related to input parsing (26.7%) and
mismatch of behavior after replacing API call (26.7%). In most cases,
the input parsing related API, i.e., scanf, has been replaced by
an API call that uses a custom library written specifically for the
tool. Other bugs include missing definitions of API functions that
are called from the translated code. The nature of these bugs is
significantly different as the non-LLM-based approaches tend to
have more bugs related to the custom library, while LLM-based
approaches have more syntax and semantics-related bugs.

C to Rust. C2Rust is a transpiler that parses C code into C AST,
converts the C AST into equivalent Rust AST by considering the
differences in syntax, memory management, and ownership seman-
tics between the two languages, and converts the Rust AST into
Rust code. Code translation using C2Rust achieves a significantly
higher success rate (95%) when compared to GPT-4 (61%). Using
GPT-4, 50% of the translation bugs were due to compilation errors,
39.3% were caused by runtime errors, and 10.7% were due to test
failures. As for C2Rust, the 5% unsuccessful translations were due to
compilation errors, the majority of them caused by unused imports.

Finding 8: C2Rust generates non-idiomatic and unsafe code,
whereas GPT-4 tends to generate safer and idiomatic code.

A close inspection of the translated Rust code offers several note-
worthy observations. Figure 4 shows an example. For the same C
code, the translation by GPT-4 (Figure 4-(a)) adheres to idiomatic
Rust translations, whereas translations produced by C2Rust (Fig-
ure 4-(b)) contain unsafe code that directs the Rust compiler to
bypass any safety checks. In fact, all of the C2Rust generated code
are unsafe, whereas, only three GPT-4-translated code are unsafe.

• Safety risks from compiler directives. The use of compiler direc-
tives (see 1 in Figure 4-(b)) can introduce various safety risks:
(1) permitting dead code, (2) the mutable_transmutes directive can

You were asked to translate the following
$SOURCE_LANG code to $TARGET_LANG:
$SOURCE_CODE
Your response was the following $TARGET_LANG
code:
$INCORRECT_TRANSLATION
Executing your generated code gives the follow-
ing output:
${STACK_TRACE | ERROR_LOG | INCORRECT_OUTPUT}
Can you re-generate your response and translate
the above $SOURCE_LANG code to $TARGET_LANG. Do
not add any natural language description in your
response.
Your generated $TARGET_LANG code should take the
following input and generate the expected
output:
Input:
$TEST_INPUT
Expected Output:
$TEST_OUTPUT

$TARGET_LANG Code: �� Generated code

1

2

3

4

5

Figure 5: Prompt crafting template for LLMs with the context
corresponding to the outcomes of unsuccessful translation.

cause undefined behaviors and mask logical flaws, and (3) allowing
unnecessary mutability can cause race conditions.
• Use of extern "C" for foreign function interface. Potential safety
risksmay result due to reliance on external C (see 2 in Figure 4-(b))
functions such as printf and scanf without Rust’s safety guaran-
tees. Specifically, the use of scanf (as in 5) without buffer size
specifications can lead to vulnerabilities such as buffer overruns.
• Unrestricted use of unsafe block. The unsafe block in main func-
tion (see 3 in Figure 4-(b)) circumvents Rust’s safety checks for
the code encompassed in that method. This increases the risk of
memory safety violations. This issue is further exacerbated by the
use of implicit casting (e.g., 0 as libc::c_int as in 4) in the
method body, which can cause unexpected behavior.

6 MITIGATING TRANSLATION BUGS
In this section, we discuss how context information pertaining to
unsuccessful translations can help fix buggy translations.

Prompt Crafting. Inspired by other works on prompt crafting
for fixing bugs [76, 84] and how human developers would address a
translation error, we propose an iterative prompting approach. Our
hypothesis is that providing more context information to LLMs can
help generate better code. Based on this hypothesis, we include the
following contextual information in the revised prompts (Figure 5).
1 Source code and original prompt. Here, we include the origi-
nal code and the previous prompt used for translating the original
code to remind LLMs about the previous task.
2 Incorrect translation and error details. Here, we provide the
incorrectly translated code ($INCORRECT_TRANSLATION), and details
regarding the outcome of the translation. If it is runtime error, we
provide stack trace ($STACK_TRACE); for compilation error, we pro-
vide error log ($ERROR_LOG); for test failures, we provide the incorrect
output ($INCORRECT_OUTPUT); finally, for non-terminating execution,
we provide a custom message “The program enters infinite loop.”
3 Instructions for translation. Here, we ask LLM to mitigate
the bug and avoid including natural-language text in the response.
4 Expected behavior. This part is used optionally if the prior
translation was a functional error. Here, we provide test input and
expected output pair for the previously wrong output.
5 Model-specific keyword. This part is specific to code LLMs and
contains the name of the target PL following code LLM templates.
All the prompts that we used are in the replication package [7].

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pan et al.

Va
nil
la

 S
uc

ce
ss

fu
l T

ra
ns

la
ti

on
s

(%
)

Ite
r1

Va
nil
la
Ite
r1

Va
nil
la
Ite
r1

Va
nil
la
Ite
r1

Ite
r2

GPT-4 StarCoder Llama 2CodeGen

Figure 6: Effectiveness of providing error-related informa-
tion in the prompt for fixing bugs.

Compile
Error (C)

Runtime
Error (R)

Functional
Error (F)

Non-termination
Error (NTE)

Fixed
(No error)

3%

58%

21%

14%

1%

48%

40%

4%

4%

43%

22%

9%
22%

33%

45%

17%

1%

2% 1%

64%

2% 4%

14% 22% 16% 13%

12%
25% 50%

50%

10%
43% 25%

25%

It
er

at
io

n
1

It
er

at
io

n
2

Figure 7: Translation outcomes after prompting GPT-4.
Iterative Translation Bug Mitigation. Our prompt-crafting

technique is iterative. At each iteration 𝑖𝑡𝑒𝑟𝑖 , we update the prompt
template (Figure 5) with information corresponding to the previ-
ously failed translation. We refer to the outcome of 𝑖𝑡𝑒𝑟𝑖 translation
as translation patch. At the end of each iteration, we verify if the
patch results in a successful translation. If not, we utilize the out-
come of the patch and build the prompt for the next iteration. The
iterative mitigation can continue for a fixed number of iterations
or until the percentage of successful translations at the previous
iteration is smaller than a pre-defined threshold.

To evaluate the effectiveness of our iterative prompt crafting,
we attempted to mitigate unsuccessful translations from RQ1 for
four subject LLMs: CodeGen, StarCoder, GPT-4, and Llama 2. We
excluded CodeGeeX because its prompt template is rigid, and we
could not introduce additional contexts. Due to inferior perfor-
mance in vanilla prompting, we also excluded the TB-Airoboros and
TB-Vicuna. We set the termination criteria so that the mitigation
process terminates if the overall increase of successful translation
is less than 5%. Figure 6 summarizes our findings. Based on the
proposed termination criterion, our mitigation process lasted for
two iterations for GPT-4, and one iteration for the rest of the models.
The results suggest that the proposed technique can increase the
number of successful translations for all the studied LLMs, with
𝑖𝑡𝑒𝑟1—prompting on results from vanilla prompts—increasing the
success rate of GPT-4, StarCoder, Codegen, and Llama 2 by 12.33%,
3.55%, 2.65%, 1.97%, respectively. 𝑖𝑡𝑒𝑟2—prompting on results from
𝑖𝑡𝑒𝑟1, can improve GPT-4 by 1.7%. We also wanted to understand
how translation bugs evolve during this iterative prompting process.

Table 6: Characteristics of LLM-based and non-LLM-based
code translation approaches.

Characteristics Non-LLM LLM
Broader context ✓ X
Determinism and reasoning ✓ X
Leveraging target-language idioms X ✓

To that end, we tracked the error outcomes of unsuccessful trans-
lations (§3.2) from vanilla prompting to 𝑖𝑡𝑒𝑟1 (for all models) and
from 𝑖𝑡𝑒𝑟1 to 𝑖𝑡𝑒𝑟2 (for GPT-4). Figure 7 shows our analysis results
on GPT-4 (other models’ results are available in the artifact [7]).

With 𝑖𝑡𝑒𝑟1, we observe a substantial reduction in compilation
errors for GPT-4, with 58% completely fixed (no error) and 38% trans-
formed to other translation bugs. However, for other errors, the
percentage is lower—45% runtime errors, 48% functional errors, and
43% non-terminating executions—suggesting these bugs are harder
to mitigate. With 𝑖𝑡𝑒𝑟2, the outcome of most bugs does not evolve
and they remain the same. In both cases, we observe a few cases
where the outcome of the translation degrades: i.e., functional error
transforms to runtime/compilation error, or runtime error trans-
forms to compilation error. Also, we found several instances where,
instead of fixing the bug, the LLM introduced a new one. These find-
ings show that, although the proposed technique improves overall
effectiveness, future work should be directed toward combining the
power of program analysis and more nuanced LLM approaches, e.g.,
by including more suitable code examples for in-context learning.

7 DISCUSSION
Pros and cons of LLM- and non-LLM-based translation. We
discuss strengths and weaknesses of each approach with respect
to three key characteristics (Table 6). First, non-LLM-based ap-
proaches, specifically transpilers, have a more comprehensive con-
text of an application. On the other hand, while translating amodule,
the variable types, method signatures, folder structure, and depen-
dencies associated with that module are often unavailable to LLMs
because of their restriction on the token size. Second, non-LLM-
based techniques are generally deterministic, allowing for more
predictable reasoning, whereas LLMs are inherently probabilistic,
with a greater degree of creativity. The third characteristic pertains
to the naturalness of the translated code. In this respect, non-LLM-
based approaches mostly do not leverage target language idioms,
which can negatively affect code readability and maintainability.
In some cases, this even leads to security issues (e.g., C to Rust).
Conversely, LLMs tend to generate more natural, human-like code.
More research on utilizing both approaches would be fruitful.
Translating real-world projects. Unlike crafted benchmarks, files
in real-world projects do not exist as standalone programs, and
providing relevant context about inter-file dependencies can help
an LLM produce better code. More fundamentally, however, new
techniques are required to enable code translation to scale to real-
world applications and also generate high-quality translations. For
instance, such techniques could use program analysis to provide
more context while translating a piece of code. Another potential
direction is to leverage program-decomposition techniques to split
the source file into smaller fragments, each translated separately
via prompts that encode appropriate context information about
the fragment’s dependencies; the translated fragments are then
composed to produce the fully translated code. Finally, a significant
challenge in translating real-world projects is handling library API

Lost in Translation: A Study of Bugs Introduced by Large Language Models while Translating Code ICSE ’24, April 14–20, 2024, Lisbon, Portugal

calls and the differences in the API ecosystem of different PLs. There
can be cases where no suitable API exists in the target PL to translate
an API call to—techniques that combine code summarization and
code synthesis could be investigated to fill such gaps.
Improving open and closed-source LLMs. The findings of this
work shows considerable scope for improving open-source and
close-source LLMs for code translation. For closed-source models
(i.e., GPT-4), the increasing complexity of use cases (i.e., translating
real-world projects) calls for an evolution in prompting strategies
perhaps with the help of program analysis. One promising research
direction could involve creating prompts that build upon each other
[78, 87], following a coherent and logical flow of information. For
open-source LLMs, enhancing the performance could involve fine-
tuning [39, 71], wherein different models [42] (instead of one model
fits all) are carefully trained to tackle distinct aspects of the transla-
tion process (particularly those related to the bug categories).

8 THREATS TO VALIDITY
Like any empirical study, there are threats to the validity of our
results. We discuss the most significant ones of these, along with
the mitigating factors.
External Validity. Threats to external validity pertain to whether
our results can generalize to other experimental settings. Key factors
here include the PLs, LLMs, and datasets selected. To mitigate these
threats, we selected five PLs, guided by PL popularity [21] while also
covering different programming paradigms. In terms of datasets,
we used multiple well-known datasets with different characteristics
and also two real-world projects. For LLM selection, we included
several SOTA general and code LLMs. Finally, for non-LLM-based
approaches, we used multiple tools covering different PLs.
Internal Validity. As for threats to internal validity, one poten-
tial threat is that, for each translation task, we performed the
translation once. Performing a translation task multiple times may
change the success rates in translation as LLMs are inherently non-
deterministic. However, this does not affect the primary goal of
our work, which is to study the characteristics of translation bugs.
Regardless of randomness or number of repetitions, the nature
of an unsuccessful translation remains unchanged. Moreover, to
reduce the effects of LLMs’ sensitivity to prompt templates, we
followed the best practices described in the respective artifacts/pa-
pers/reports (refer §2). Another threat to internal validity is that we
do not have a formal inter-rater reliability metric for our manual
labeling of bugs. To mitigate this threat, after each labeling round,
both labelers met to discuss any discrepancies and resolve them.
At the end, each bug was assigned a single mutually agreed label.
On top of that, one author went through the entire labeling to
ensure consistency among the groups. Finally, our results may be
affected by bugs in our automation scripts. To address this threat,
we thoroughly tested the scripts and spot-checked the results for
correctness. Moreover, we make our artifacts publicly available [7]
to enable review and replication of our results.
Construct Validity.We measured translation correctness using
the test cases provided in our datasets, which is a commonly used
approach for assessing the quality of generated code. This approach
comes with the risk that inadequate or weak test suites can cause
buggy translations that pass the test suites to be considered correct.
We note that one of our datasets, CodeNet [63], contains one test

case per sample and may be susceptible to this threat. However, the
other datasets used contain fairly rigorous test suites.

9 RELATEDWORK
Code Translation and Synthesis. There exist two broad classes of
code-translation approaches. The first category includes tools such
as transpilers, or source-to-source compilers, that leverage program-
analysis techniques for converting code from one PL to another.
For instance, C2Rust [9] and CxGo [8] are transpilers that translate
C programs to Rust and Go, respectively, whereas Sharpen [18] and
Java2CSharp [14] convert Java code to C#. The second category
includes learning-based techniques, including lexical statistical ma-
chine translation [55, 56] and tree-based neural networks [29] for
translating Java to C#. Other work in the category leverages deep
learning and unsupervised learning [50, 65] for translating C++,
Java, and Python code, phase-based statistical learning [47] for C#-
to-Java translation, etc. More recent techniques leverage LLMs (e.g.,
StarCoder [52], PolyCoder [86], SantaCoder [24], CodeGen [58],
BLOOM [67], CodeT5 [77], CodeX [27], GPT-4 [12], Llama 2 [16],
etc.) for code generation and code translation (CodeGeeX [91]).
However, in the context of LLMs, there is no study that under-
stands the bugs introduced by LLMs during code-translation tasks.
Bug and repair study. Software bugs are well studied [25] includ-
ing several works on deep learning model-related bugs [40, 41, 90].
Moreover, there is also an extensive list of works on fixing soft-
ware bugs using LLMs (e.g., [32, 45, 84, 85], and other approaches
(e.g., [33, 83, 88]). Compared to both of these classes of studies, here,
we study bugs introduced by LLMs while translating code from
one PL to another. Also, we compare the effectiveness of LLM with
non-LLM-based approaches in terms of code translation task.

10 CONCLUDING REMARKS
Code translation has various applications, from modernizing en-
terprise applications to migrating legacy software to modern PLs.
Given the promising performance of LLMs in code synthesis, we
were interested to understand how they perform in code transla-
tion task. Our empirical investigation of the general and code LLMs
across five PLs and several benchmarks and real-world projects
demonstrates that state-of-the-art LLMs are yet to effectively auto-
mate code translation, specifically to translate complex real-world
projects. Through meticulous manual analysis, we also identified 15
root causes of unsuccessful translations. Furthermore, to investigate
how providing more context can help LLMs generate better code,
we presented and evaluated an iterative prompt-crafting technique.
We also assessed existing non-LLM-based techniques, comparing
their strengths and weaknesses. We are currently considering sev-
eral directions for future work. First, we want to investigate how
existing SE/PL techniques can help mitigate these bugs, includ-
ing giving more context to LLMs. Second, our ultimate goal is to
advance real-world application translation.

ACKNOWLEDGMENTS
This work is supported by IBM-Illinois Discovery Accelerator Insti-
tute and NSF CCF 22-38045 CAR grants. We thank Darko Marinov,
David Grove, John Rofrano, Maja Vuković, and Seetharami Seelam
for their help with this research. We also thank the anonymous re-
viewers for their comments, which helped make this work stronger.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pan et al.

REFERENCES
[1] 2018. Upgrading GitHub from Rails 3.2 to 5.2. https://github.blog/2018-09-28-

upgrading-github-from-rails-3-2-to-5-2/.
[2] 2020. Supporting Linux kernel development in Rust. https://lwn.net/Articles/

829858/.
[3] 2020. Transform monolithic Java applications into microservices with the

power of AI. https://developer.ibm.com/tutorials/transform-monolithic-java-
applications-into-microservices-with-the-power-of-ai/.

[4] 2020. Will code move on to a language such as Rust? https://www.theregister.
com/2020/06/30/hard_to_find_linux_maintainers_says_torvalds/.

[5] 2021. GitHub’s Journey from Monolith to Microservices. https://www.infoq.com/
articles/github-monolith-microservices/.

[6] 2023. Apache Commons CLI. https://commons.apache.org/proper/commons-cli/.
[7] 2023. Artifact Website. https://github.com/Intelligent-CAT-Lab/

PLTranslationEmpirical.
[8] 2023. C to Go Translator. https://github.com/gotranspile/cxgo.
[9] 2023. C2Rust Transpiler. https://github.com/immunant/c2rust.
[10] 2023. Click. https://click.palletsprojects.com/en/8.1.x/.
[11] 2023. CodeGeeX. https://github.com/THUDM/CodeGeeX/blob/main/tests/test_-

prompt.txt.
[12] 2023. GPT-4 Technical Report. https://cdn.openai.com/papers/gpt-4.pdf.
[13] 2023. Hugging Face Open LLM Leaderboard.

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.
[14] 2023. Java 2 CSharp Translator for Eclipse. https://sourceforge.net/projects/

j2cstranslator/.
[15] 2023. Java to CSharp Converter. https://github.com/paulirwin/JavaToCSharp.
[16] 2023. Llama-2. https://ai.meta.com/research/publications/llama-2-open-

foundation-and-fine-tuned-chat-models/.
[17] 2023. py_compile—Compile Python source files.

https://docs.python.org/3/library/py_compile.html.
[18] 2023. Sharpen - Automated Java->C# coversion. https://github.com/mono/

sharpen.
[19] 2023. TheBloke Airoboros 13B. https://huggingface.co/TheBloke/airoboros-13B-

HF.
[20] 2023. TheBloke Wizard Vicuna 13B. https://huggingface.co/TheBloke/Wizard-

Vicuna-13B-Uncensored-HF.
[21] 2023. TIOBE Index. https://www.tiobe.com/tiobe-index/.
[22] Seif Abukhalaf, Mohammad Hamdaqa, and Foutse Khomh. 2023. On Codex

Prompt Engineering for OCL Generation: An Empirical Study. arXiv preprint
arXiv:2303.16244 (2023).

[23] Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei
Chang. 2021. Avatar: A parallel corpus for java-python program translation.
arXiv preprint arXiv:2108.11590 (2021).

[24] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher
Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu,
Manan Dey, et al. 2023. SantaCoder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988 (2023).

[25] Boris Beizer. 1990. Software testing techniques.
[26] Alexander Bergmayr, Hugo Bruneliere, Javier Luis Cánovas Izquierdo, Jesús

Gorronogoitia, George Kousiouris, Dimosthenis Kyriazis, Philip Langer, Andreas
Menychtas, Leire Orue-Echevarria, Clara Pezuela, et al. 2013. Migrating legacy
software to the cloud with ARTIST. In 2013 17th European Conference on Software
Maintenance and Reengineering. IEEE, 465–468.

[27] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[28] Pinzhen Chen and Gerasimos Lampouras. 2023. Exploring data augmentation
for code generation tasks. arXiv preprint arXiv:2302.03499 (2023).

[29] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-to-tree neural networks
for program translation. Advances in neural information processing systems 31
(2018).

[30] Roberto Rodriguez Echeverria, FernandoMacias, VictorManuel Pavon, JoseMaria
Conejero, and Fernando Sanchez Figueroa. 2015. Legacy web application mod-
ernization by generating a REST service layer. IEEE Latin America Transactions
13, 7 (2015), 2379–2383.

[31] Aryaz Eghbali and Michael Pradel. 2022. CrystalBLEU: precisely and efficiently
measuring the similarity of code. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. 1–12.

[32] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[33] L. Gazzola, D. Micucci, and L. Mariani. 2019. Automatic Software Repair: A
Survey. IEEE Transactions on Software Engineering 45, 01 (jan 2019), 34–67.
https://doi.org/10.1109/TSE.2017.2755013

[34] Mahdi Fahmideh Gholami, Farhad Daneshgar, Ghassan Beydoun, and Fethi Rabhi.
2017. Challenges in migrating legacy software systems to the cloud—an empirical

study. Information Systems 67 (2017), 100–113.
[35] Linyuan Gong, Jiayi Wang, and Alvin Cheung. 2023. ADELT: Transpilation

Between Deep Learning Frameworks. arXiv preprint arXiv:2303.03593 (2023).
[36] Sindre Grønstøl Haugeland, Phu H Nguyen, Hui Song, and Franck Chauvel.

2021. Migrating monoliths to microservices-based customizable multi-tenant
cloud-native apps. In 2021 47th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, 170–177.

[37] DongNyeong Heo and Heeyoul Choi. 2022. End-to-End Training of Both Transla-
tion Models in the Back-Translation Framework. arXiv preprint arXiv:2202.08465
(2022).

[38] Jaemin Hong. 2023. Improving Automatic C-to-Rust Translation with Static
Analysis. In 2023 IEEE/ACM 45th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE, 273–277.

[39] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning
for text classification. arXiv preprint arXiv:1801.06146 (2018).

[40] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study on deep learning bug characteristics. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 510–520.

[41] Md Johirul Islam, Rangeet Pan, Giang Nguyen, andHridesh Rajan. 2020. Repairing
deep neural networks: Fix patterns and challenges. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. 1135–1146.

[42] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991.
Adaptive mixtures of local experts. Neural computation 3, 1 (1991), 79–87.

[43] Prithwish Jana, Piyush Jha, Haoyang Ju, Gautham Kishore, Aryan Mahajan, and
Vijay Ganesh. 2023. Attention, Compilation, and Solver-based Symbolic Analysis
are All You Need. arXiv preprint arXiv:2306.06755 (2023).

[44] Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. 2023.
Self-planning code generation with large language model. arXiv preprint
arXiv:2303.06689 (2023).

[45] Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Verbruggen,
and Ivan Radiček. 2023. Repair is nearly generation: Multilingual program repair
with llms. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37.
5131–5140.

[46] Anup K Kalia, Jin Xiao, Rahul Krishna, Saurabh Sinha, Maja Vukovic, and Deba-
sish Banerjee. 2021. Mono2micro: a practical and effective tool for decomposing
monolithic java applications to microservices. In Proceedings of the 29th ACM
joint meeting on European software engineering conference and symposium on the
foundations of software engineering. 1214–1224.

[47] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. 2014. Phrase-based
statistical translation of programming languages. In Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming & Software. 173–184.

[48] Justas Kazanavičius and Dalius Mažeika. 2019. Migrating legacy software to
microservices architecture. In 2019 Open Conference of Electrical, Electronic and
Information Sciences (eStream). IEEE, 1–5.

[49] Rahul Krishna, Anup Kalia, Saurabh Sinha, Rachel Tzoref-Brill, John Rofrano,
and Jin Xiao. 2021. Transforming monolithic applications to microservices with
Mono2Micro. In Proceedings of the 36th IEEE/ACM International Conference on
Automated Software Engineering. 3–3.

[50] Marie-Anne Lachaux, Baptiste Roziere, Marc Szafraniec, and Guillaume Lample.
2021. DOBF: A deobfuscation pre-training objective for programming languages.
Advances in Neural Information Processing Systems 34 (2021), 14967–14979.

[51] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[52] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[53] Fang Liu, Jia Li, and Li Zhang. 2023. Syntax and Domain Aware Model for
Unsupervised Program Translation. arXiv preprint arXiv:2302.03908 (2023).

[54] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. arXiv preprint arXiv:2305.01210 (2023).

[55] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2013. Lexical
statistical machine translation for language migration. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering. 651–654.

[56] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2014. Migrating
code with statistical machine translation. In Companion Proceedings of the 36th
International Conference on Software Engineering. 544–547.

[57] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2015. Divide-and-
conquer approach for multi-phase statistical migration for source code (t). In
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 585–596.

[58] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. In The Eleventh International
Conference on Learning Representations.

https://github.blog/2018-09-28-upgrading-github-from-rails-3-2-to-5-2/
https://github.blog/2018-09-28-upgrading-github-from-rails-3-2-to-5-2/
https://lwn.net/Articles/829858/
https://lwn.net/Articles/829858/
https://developer.ibm.com/tutorials/transform-monolithic-java-applications-into-microservices-with-the-power-of-ai/
https://developer.ibm.com/tutorials/transform-monolithic-java-applications-into-microservices-with-the-power-of-ai/
https://www.theregister.com/2020/06/30/hard_to_find_linux_maintainers_says_torvalds/
https://www.theregister.com/2020/06/30/hard_to_find_linux_maintainers_says_torvalds/
https://www.infoq.com/articles/github-monolith-microservices/
https://www.infoq.com/articles/github-monolith-microservices/
https://commons.apache.org/proper/commons-cli/
https://github.com/Intelligent-CAT-Lab/PLTranslationEmpirical
https://github.com/Intelligent-CAT-Lab/PLTranslationEmpirical
https://github.com/gotranspile/cxgo
https://github.com/immunant/c2rust
https://click.palletsprojects.com/en/8.1.x/
https://cdn.openai.com/papers/gpt-4.pdf
https://sourceforge.net/projects/j2cstranslator/
https://sourceforge.net/projects/j2cstranslator/
https://github.com/paulirwin/JavaToCSharp
https://github.com/mono/sharpen
https://github.com/mono/sharpen
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1109/TSE.2017.2755013

Lost in Translation: A Study of Bugs Introduced by Large Language Models while Translating Code ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[59] Vikram Nitin, Shubhi Asthana, Baishakhi Ray, and Rahul Krishna. 2022. CARGO:
ai-guided dependency analysis for migrating monolithic applications to microser-
vices architecture. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. 1–12.

[60] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[61] Hongyu Pei Breivold. 2020. Towards factories of the future: migration of industrial

legacy automation systems in the cloud computing and Internet-of-things context.
Enterprise Information Systems 14, 4 (2020), 542–562.

[62] Ricardo Pérez-Castillo, Manuel A Serrano, and Mario Piattini. 2021. Software
modernization to embrace quantum technology. Advances in Engineering Software
151 (2021), 102933.

[63] Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al.
2021. CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of
Coding Tasks. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

[64] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-
san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. Codebleu: a method for
automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297 (2020).

[65] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.
2020. Unsupervised translation of programming languages. Advances in Neural
Information Processing Systems 33 (2020), 20601–20611.

[66] Baptiste Roziere, JieMZhang, Francois Charton, MarkHarman, Gabriel Synnaeve,
and Guillaume Lample. 2021. Leveraging automated unit tests for unsupervised
code translation. arXiv preprint arXiv:2110.06773 (2021).

[67] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias
Gallé, et al. 2022. Bloom: A 176b-parameter open-access multilingual language
model. arXiv preprint arXiv:2211.05100 (2022).

[68] Rajaraajeswari Settu and Pethuru Raj. 2013. Cloud application modernization
and migration methodology. Cloud Computing: Methods and Practical Approaches
(2013), 243–271.

[69] André Silva, João F Ferreira, He Ye, and Martin Monperrus. 2023. MUFIN: Improv-
ing Neural Repair Models with Back-Translation. arXiv preprint arXiv:2304.02301
(2023).

[70] Ishan Mani Subedi, Maninder Singh, Vijayalakshmi Ramasamy, and Gursim-
ran Singh Walia. 2021. Application of back-translation: a transfer learning
approach to identify ambiguous software requirements. In Proceedings of the 2021
ACM Southeast Conference. 130–137.

[71] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune
bert for text classification?. In Chinese Computational Linguistics: 18th China
National Conference, CCL 2019, Kunming, China, October 18–20, 2019, Proceedings
18. Springer, 194–206.

[72] Qiushi Sun, Nuo Chen, Jianing Wang, Xiang Li, and Ming Gao. 2023. TransCoder:
Towards Unified Transferable Code Representation Learning Inspired by Human
Skills. arXiv preprint arXiv:2306.07285 (2023).

[73] Marc Szafraniec, Baptiste Roziere, Hugh Leather Francois Charton, Patrick La-
batut, and Gabriel Synnaeve. 2022. Code translation with compiler representa-
tions. arXiv preprint arXiv:2207.03578 (2022).

[74] Johannes Thönes. 2015. Microservices. IEEE software 32, 1 (2015), 116–116.
[75] Chih-Kai Ting, Karl Munson, SerenityWade, Anish Savla, Kiran Kate, and Kavitha

Srinivas. 2023. CodeStylist: A System for Performing Code Style Transfer Using
Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 37. 16485–16487.

[76] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems

extended abstracts. 1–7.
[77] YueWang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-

aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

[78] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[79] Justin D Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I Ross,
Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. 2021. Perfection
not required? Human-AI partnerships in code translation. In 26th International
Conference on Intelligent User Interfaces. 402–412.

[80] Justin D Weisz, Michael Muller, Steven I Ross, Fernando Martinez, Stephanie
Houde, Mayank Agarwal, Kartik Talamadupula, and John T Richards. 2022. Better
together? an evaluation of ai-supported code translation. In 27th International
Conference on Intelligent User Interfaces. 369–391.

[81] Yuanbo Wen, Qi Guo, Qiang Fu, Xiaqing Li, Jianxing Xu, Yanlin Tang, Yongwei
Zhao, Xing Hu, Zidong Du, Ling Li, et al. 2022. BabelTower: Learning to Auto-
parallelized ProgramTranslation. In International Conference onMachine Learning.
PMLR, 23685–23700.

[82] JulesWhite, Quchen Fu, SamHays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt
pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382 (2023).

[83] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2022. Practical pro-
gram repair in the era of large pre-trained language models. arXiv preprint
arXiv:2210.14179 (2022).

[84] Chunqiu Steven Xia and Lingming Zhang. 2022. Less training, more repairing
please: revisiting automated program repair via zero-shot learning. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 959–971.

[85] Chunqiu Steven Xia and Lingming Zhang. 2023. Conversational automated
program repair. arXiv preprint arXiv:2301.13246 (2023).

[86] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1–10.

[87] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving
with large language models. arXiv preprint arXiv:2305.10601 (2023).

[88] Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen.
2023. A Survey of Learning-based Automated Program Repair. arXiv preprint
arXiv:2301.03270 (2023).

[89] WG Zhang, Arne J Berre, Dumitru Roman, and Hans Aage Huru. 2009. Migrating
legacy applications to the service Cloud. In Proceedings of the 14th Conference
Companion on Object Oriented Programming Systems Languages and Applications.
59–68.

[90] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An empirical study on TensorFlow program bugs. In Proceedings of the 27th ACM
SIGSOFT international symposium on software testing and analysis. 129–140.

[91] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan
Wang, Lei Shen, Andi Wang, Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on humaneval-x. arXiv preprint
arXiv:2303.17568 (2023).

[92] Terry Yue Zhuo, Zhuang Li, Yujin Huang, Yuan-Fang Li, Weiqing Wang, Gholam-
reza Haffari, and Fatemeh Shiri. 2023. On robustness of prompt-based semantic
parsing with large pre-trained language model: An empirical study on codex.
arXiv preprint arXiv:2301.12868 (2023).

https://arxiv.org/abs/2303.08774

	Abstract
	1 Introduction
	2 Empirical Setup
	3 LLM-Based Code Translation
	3.1 Effectiveness of LLMs in Code Translation
	3.2 Outcome of Unsuccessful Translations

	4 LLM-Based Translation Bugs
	4.1 Taxonomy of Translation Bugs
	4.2 Prevalence of LLM-based Translation Bugs
	4.3 Translation Bugs in Real-world Projects

	5 LLM- vs. Non-LLM-based Translation
	6 Mitigating Translation Bugs
	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Concluding Remarks
	Acknowledgments
	References

