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Code translation transforms source code from one programming language (PL) to another. Validating the
functional equivalence of translation and repairing, if necessary, are critical steps in code translation. Existing
automated validation and repair approaches struggle to generalize to many PLs due to high engineering
overhead, and they rely on existing and often inadequate test suites, which results in false claims of equivalence
and ineffective translation repair. To bridge this gap, we develop MatchFixAgent, a large language model
(LLM)-based, PL-agnostic framework for equivalence validation and repair of translations. MatchFixAgent
features amulti-agent architecture that divides equivalence validation into several sub-tasks to ensure thorough
and consistent semantic analysis of the translation. Then it feeds this analysis to test agent to write and execute
tests. Upon observing a test failure, the repair agent attempts to fix the translation bug. The final (in)equivalence
decision is made by the verdict agent, considering semantic analyses and test execution results.

We compare MatchFixAgent’s validation and repair results with four repository-level code translation
techniques. We use 2,219 translation pairs (each consisting of a source function and its translation) from their
artifacts, which cover 6 PL pairs, and are collected from 24 GitHub projects totaling over 900𝐾 lines of code.
Our results demonstrate that MatchFixAgent produces (in)equivalence verdicts for 99.2% of translation
pairs, with the same equivalence validation result as prior work on 72.8% of them. When MatchFixAgent ’s
result disagrees with prior work, we find that 60.7% of the time MatchFixAgent ’s result is actually correct.
In addition, we show that MatchFixAgent can repair 50.6% of inequivalent translation, compared to prior
work’s 18.5%. This demonstrates that MatchFixAgent is far more adaptable to many PL pairs (with a small
overhead of 1,650 lines of code) than prior work, while producing highly accurate validation results.

Additional Key Words and Phrases: Program Analysis, Neuro-Symbolic Code Translation Validation and
Repair, LLM Agent

1 Introduction
Code translation, the process of converting source code from one programming language (PL) to
another, is a cornerstone of software modernization efforts that enhance performance, maintain-
ability, and reliability [30, 31, 34, 35]. Translation validation and repair are integral steps in code
translation for determining functional equivalence and patch generation for incorrect translations.
However, performing validation and repair manually—particularly in large codebases—can be
tedious, time-consuming, and error-prone, especially when complex code structures and dependen-
cies are involved [28, 37, 75]. Prior work on repository-level code translation defines value and type
equivalences and translations to compare source and target implementations over pairs of concrete
inputs. The inputs either come from existing tests from the source project [29, 53, 73, 86] or differ-
ential fuzzing [17, 82]. Despite notable advancements in validation and repair of repository-level
code translation, existing techniques are hampered by the following limitations:
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(1) Difficulty Generalizing to Many PL Pairs. While the fundamental ideas of current validation
approaches extend to many PL pairs, their actual implementations typically support just one
language pair. This is because supporting language interoperability between a pair of PLs
requires a large engineering effort, as evidenced by the size of these tools1. Given the quadratic
number of PL pairs, language interoperability techniques are extremely challenging to scale to
many PL pairs.

(2) Unknown Test Requirements. Current translation validation approaches require a set of valid
inputs to validate the input-output equivalence between source functions and their translation.
They generate these inputs by either executing available source tests [29, 53, 73, 86] or fuzzing
the source project [17, 82] Unit tests are often incomplete, missing important inputs, and
resulting in false claims of equivalence. Fuzzing techniques suffer from generating invalid
inputs, also resulting in false claims of inequivalence, and in general, failing to reach deep into
the code or create complex objects in the context of real-world projects [27, 36].

(3) Ineffective Translation Repair. Recent studies have shown that a more rigorous validation can
reveal more translation bugs [49]. Hence, advancement in translation validation should be
accompanied by effective repair strategies. Existing techniques, however, either require the
user to fix incorrect translations manually [73] or use feedback-driven re-prompting strate-
gies [29, 86] that are barely effective in repository-level code translation due to long call-chain
dependencies in real-world projects [29].

Prior work consists of high-effort implementations that can deliver inconsistent results and only
apply to one of a quadratic number of language pairs. Large Language Models (LLMs) have recently
been successful at same-language equivalence validation [41, 76], so replacing cross-language
equivalence implementations with LLM decisions is a logical next step. While there is a risk of
incorrect results, the baseline mechanical approaches already display low accuracy.
Towards this end, we propose MatchFixAgent, a language-agnostic approach to automate

validation and repair of repository-level code translation (§3.1). MatchFixAgent combines the
generative power of LLMs with several approximate code semantic analyses, i.e., analysis of control-
and data-flow paths, library APIs, exception handling, and (formal or informal) specification (§3.2).
These semantic analyses are then fed to a test generator & repair agent to generate tests for assessing
functional equivalence, and repair the translation in the case of failing tests (§3.3). The final
equivalence decision will be made by the verdict agent, considering the approximate semantic
analyses and test execution results (§3.4). MatchFixAgent is very lightweight (1650 lines of code),
modular, and interoperable with existing repository-level translation systems.
We evaluate the effectiveness of MatchFixAgent for repository-level translation validation

and repair against four existing techniques [29, 47, 73, 86]. Our benchmark comprises 2,219
source–translation function pairs, which cover 6 PL pairs, drawn from 24 real-world projects
totaling over 900𝐾 lines of code (§4.1). For each translation pair, we obtain an equivalence verdict
(validation outcome) from both MatchFixAgent and other techniques. Overall, MatchFixAgent
returns a verdict for 99.2% of pairs, while alternative approaches do so for only 71.6% (§4.2.1). On the
1,571 pairs where both produce verdicts, MatchFixAgent agrees with other approaches in 72.8% of
cases. For the remaining disagreements, a systematic manual investigation finds MatchFixAgent
to be correct in 60.7% of cases and incorrect in the rest (§4.2.2). In translation repair, MatchFixA-
gent can fix 50.6% of translation bugs, 32.1% more than existing approaches (§4.3). We show that
MatchFixAgent is compatible with different LLMs and agent frameworks, producing comparable
results (§4.4). Lastly, our ablation study shows that removing code analyses and in-the-loop test

1The implementation of notable recent translation and validation techniques are AlphaTrans (10859 LoC), Oxidizer (19052
LoC), and Skel (3843 LoC).
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RepairGeneralization Validation
func go_len() int {

 return len([]rune("😊"))

} // returns 1

fn rs_len() -> usize {

 "😊".len()

} // returns 4

fn rs_len() -> usize {

 "😊".chars().count()

} // returns 1

assert go_len() == 1 ✅
assert rs_len() == 1 ❌

a1
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Dynamic Analysis

Type Map

In : {float* a = [0, 0.1, ...], ...}
Out: {float* a = [0, 0.2, ...], ...}
In : {int x = 34,  int y = 16,  ...}
Out: {boolean true}                 
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Fig. 1. Illustration of key limitations of existing techniques in validation and repair of repository-level code

translation and MatchFixAgent addressing them.

generation reduces verdict accuracy by 42.3%, while increasing token usage by 5.2% (§4.5). These
results confirm that MatchFixAgent is a viable alternative to prior work’s validation and repair
approaches, while being vastly easier to adapt to new PL pairs.

Our notable contributions are:
(1) We present MatchFixAgent, a PL-agnostic, agentic approach for validation and repair of

repository-level code translation.
(2) We demonstrate thatMatchFixAgent is a viable alternative to prior work’s validation approach,

while being vastly easier to adapt to new PL pairs.
(3) We demonstrate the benefit of MatchFixAgent’s multi-agent architecture compared to simpler

standalone-agent design.

2 Limitations of Prior Work
To demonstrate the limitations of existing techniques [29, 53, 73, 86] for validation and repair, we
use the examples in Figure 1.
Limitation 1: Generalization. Existing automated translation tools require substantial engi-

neering effort to build validation systems for individual language pairs. For instance, Oxidizer [86]
and Syzygy [53] require dynamic analysis and I/O extraction from source code ( a1 ). Oxidizer
further requires a predefined feature map ( a2 ), which together with their dynamic analyzer is
19,000 lines of code. Other tools like AlphaTrans [29] and Skel [73] validate programs using high
quality type map ( a3 ), which requires manual maintenance over time as PLs evolve. In comparison,
MatchFixAgent uses only language-agnostic LLM prompts, an off-the-shelf LLM coding agent
tool, and lightweight static analysis. While the static analysis must be implemented for each PL,
each PL requires approximately 280 additional lines of code to support, hence it is extremely easy
to generalize to many PLs.

Limitation 2: Validation. Most prior work depends on existing source project tests for transla-
tion validation, but these tests may have insufficient coverage. The test suites in AlphaTrans [29]
have an average of 56.57% method coverage. Even when developer-written tests provide adequate
coverage, they may miss the edge cases that expose subtle semantic differences between source
and target languages. Consider the real-world case from Oxidizer [86], where a Go program ( b1 )
that counts characters in a string is translated to Rust ( b2 ) using the .len() method, which counts
bytes rather than characters. Oxidizer validates this pair as functionally equivalent because it only
exercises this program with ASCII inputs. MatchFixAgent, in contrast, marks the translation
as not equivalent, and synthesizes a test with Unicode inputs (e.g., U+1F60A, a four-byte emoji
representing a single character) to confirm the inequivalence. Upon detecting the translation bug,
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Fig. 2. Overview of MatchFixAgent.

it automatically generates a patch that uses .chars().count() to ensure proper handling of both
ASCII and Unicode characters ( b3 ).

Limitation 3: Repair. Current translation repair techniques solely rely on simple feedback-
driven approaches, which have proven inadequate in practical settings. Skel [73], Oxidizer [86],
and Syzygy [53] utilize multi-turn iterative prompting techniques. AlphaTrans [29] adopts an
execution trace-based reprompting strategy. For instance, consider scenario ( c1 ), where running
the test method sequentially invokes methods m1, m2, and m3. If a translation bug is present in
fragment m2, AlphaTrans reprompts all executed fragments individually without considering inter-
fragment dependencies. This approach, while potentially resolving the bug in m2, risks introducing
new functional bugs in previously correct fragments, such as m1. To overcome this limitation,
MatchFixAgent uses code analysis and an LLM agent ( c2 ). The analyses expose dependencies
such as the one between m1 and m2 and the agent interacts with the execution environment to
execute, validate, and iteratively refine its generated patches.

3 MatchFixAgent
In this section, we discuss MatchFixAgent and its three primary components in more detail. We
first provide a high-level overview, then go into more details.

3.1 Overview
Figure 2 gives an overview of MatchFixAgent, which consists of three main components: (1)
the Semantic Analyzer (§3.2), (2) the Test Generator & Repair Agent (§3.3), and (3) the Verdict
Agent (§3.4). MatchFixAgent’s main inputs are: a translation pair (a source function and its
translation), the source project, and the source project’s translation. MatchFixAgent’s outputs are:
an equivalence verdict, a natural language report, and an optional patch that repairs the translation
if the translation was found to be not equivalent. In addition, MatchFixAgent is configured with
an LLM, a set of tools for the agents, and a timeout.

Details of MatchFixAgent’s algorithm are shown in Algorithm 1. First, the Semantic Analyzer
is executed, which uses an LLM to analyze different semantic properties of the source function
and its translation. We decompose this task into six sub-tasks for the LLM, which are executed
independently. Each task analyzes a different semantic property of the source and translation,
namely control flow (§3.2.1), data flow (§3.2.2), input and output mapping (§3.2.3), library API
usage (§3.2.4), exception and error handling (§3.2.5), and specifications (§3.2.6). This sub-task
architectures help to keep the LLM focused, and improves overall reliability and consistency [6].
Each sub-task outputs a report that summarizes differences between the source and translation for
the given semantic property.
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============= Source Code ============
def max(a, b):

"""
The function max(a, b) returns the
greater of the two input values a
and b. If a is greater than b, it
returns a; otherwise, it returns a.
"""
if a > b:

return a
else:

return b

========= Control Flow Graph =========
Node 0: PARAMETERS

parameter: a, parameter: b
→ Node 1: ENTRY

Node 1: ENTRY
→ Node 2: if a > b:

Node 2:
if a > b:
→ Node 3 [label="a > b"]:

return a
→ Node 4 [label="(a <= b)"]:

return b

=========== Data Flow Paths ===========
Variable: a

Path 1:
CFG Node Path: 0 → 1 → 2

Path 2:
CFG Node Path: 0 → 1 → 2 → 3

Variable: b
Path 1:

CFG Node Path: 0 → 1 → 2
Path 2:

CFG Node Path: 0 → 1 → 2 → 4

Fig. 3. CFG and DFP structures extracted by the Semantic Analyzer component in MatchFixAgent.

These reports are then fed to the Test Generator and Repair Agent, which uses an off-the-shelf
LLM coding agent, such as Claude Code [56] or Codex [64], to write executable test cases that may
reveal inequivalent behavior. If the agent discovers inequivalent behavior, the agent also attempts
to write a patch to repair the translation. This component outputs a boolean equivalence verdict, a
set of tests for both the source project and translation, and an optional patch.

Algorithm 1: MatchFixAgent
Input : sourceProject, sourceFunc, translatedProject,

translatedFunc, LLM, tools, timeout

Output :validationRepairReport

1 transPair← [ sourceFunc, translatedFunc ]
2 Function async semAnalyzer (transPair, LLM):

3 cfgSrc, dfSrc← build_cfg (sourceFunc)
4 cfgTgt, dfTgt← build_cfg (translatedFunc)
5 return

6 { controlFlowAnalyzer (cfgSrc, cfgTgt, transPair, LLM),

7 dataFlowPathAnalyzer (dfSrc, dfTgt, transPair, LLM),

8 ioAnalyzer (transPair, LLM),

9 libraryAnalyzer (transPair, LLM),

10 exceptionAnalyzer (transPair, LLM),

11 specAnalyzer (transPair, LLM) }

12 await semAnalysis← semAnalyzer (cfgSrc, dfSrc, cfgTgt, dfTgt)
13 testRepair← testGenRepairAgent (prompt, LLM, tools,

timeout)
14 verdict← verdictAgent (semAnalysis, testRepair, LLM)
15 validationRepairReport← semAnalysis ∪ testRepair ∪ verdict

16 return validationRepairReport

Finally, the Verdict Agent takes the outputs
from the Semantic Analyzer and Test Gener-
ator and Repair Agent, which validates the
claims made in those outputs, and provides a
final verdict on the functional equivalence be-
tween the source and translation. The output
includes a final boolean equivalence verdict,
an overall summary, and the outputs from
the Test Generator and Repair Agent.

3.2 Semantic Analyzer
The Semantic Analyzer takes as input the
translation pair and an LLM. It first com-
putes a control flow graph (CFG) and data
flow graph (DFG) (described in Sections 3.2.1
and 3.2.2 respectively), and then calls six sub-
analyzers in parallel, each of which analyzes
a different semantic property of the transla-
tion pair. Each sub-analyzer invokes the LLM
with a custom prompt describing the analysis to perform. The prompts are relatively simple and
short. The prompt first defines a role for the LLM (“You are an expert in...”), a general definition
of functional equivalence, and a specific definition of equivalence for the semantic property. It then
instructs the analyzer to output an equivalence verdict and explanation for the specific semantic
property it analyzed. In addition, certain analyzers output examples to demonstrate inequiva-
lence. The final output of the Semantic Analyzer is a 6-tuple containing a JSON-formatted output
of each sub-analyzer. The following subsections provide more details on the prompts of the six
sub-analyzers.

3.2.1 Control Flow Analyzer. The Control Flow Analyzer is prompted to analyze the the control flow
structures of the source and translation are equivalent, looking for inequivalences like reordered
conditions, missing branches, or altered loop termination criteria. To aid this task, we provide the
LLM with textual representations of the source and translation’s CFGs. An example is shown in
Figure 3. To compute the CFG, we use Tree-Sitter [72] to construct an abstract syntax tree of the
function, and then extract basic blocks and control flow structures. Tree-sitter supports 165+ PLs,
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making this process PL-agnostic. Each PL supported by MatchFixAgent required approximately
280 lines of code, making it very easy to support many PLs.

Algorithm 2: Control Flow Analyzer
Input :cfgSource, cfgTarget, fragments, model

Output :cfgAnalysis

1 Function abstractGraph (cfg):

2 for (𝑢, 𝑣) with 𝑒𝑑𝑔𝑒 ∈ cfg do
3 uType, vType← classifyNode (𝑢), classifyNode (𝑣)
4 edgeType← classifyEdge (𝑒𝑑𝑔𝑒)
5 nodes← nodes ∪ uType ∪ vType

6 edges← edges ∪ ⟨ uType, edgeType, vType ⟩
7 return nodes, edges

8 sourceNodes, sourceEdges← abstractGraph (cfgSource)
9 targetNodes, targetEdges← abstractGraph (cfgTarget)

10 nodeSim← jaccardSimilarity (sourceNodes, targetNodes)
11 edgeSim← jaccardSimilarity (sourceEdges, targetEdges)
12 similarity← ( 0.5 × nodeSim) + ( 0.5 × edgeSim)
13 if similarity ⩾ threshold = 0.7 then
14 cfgAnalysis← { "is_equivalent": "yes" }

15 else

16 cfgAnalysis← LLM (cfgSource, cfgTarget, fragments, model)
17 return cfgAnalysis

To improve reliability and reduce costs, the
control flow analyzer first (symbolically) com-
putes a similarity score between the CFGs,
and, if it falls above a threshold, it imme-
diately returns an equivalent verdict with-
out invoking the LLM. The overall procedure
is shown in Algorithm 2. The analyzer ab-
stracts each graph into canonical forms (lines
1–9) capturing node types (e.g., conditionals,
loops, exception handlers) and edge types
(control transfer relationships), then com-
putes the structural similarity score based on
the Jaccard index [12] (lines 10–12). We use
0.7 as the threshold. This results in approxi-
mately 25% of LLM invocations being skipped
in our experiments, making this threshold rel-
atively stringent.

3.2.2 Data Flow Analyzer. The Data Flow Analyzer is prompted to evaluate whether the flow of
data within the source and translation is equivalent, looking for issues like unused variables. To
aid the LLM, we provide textual representations of the source and translation’s data flow graphs
(DFGs). An example is shown in Figure 3. We keep our data flow computation extremely simple.
For each statement in the AST, we extract variable names, label them as a def or a use, and associate
them with a CFG node. We then extract def-use chains. This is primarily a syntactic analysis.
We do not handle challenging problems such as aliasing, concurrency, or context sensitivity. The
per-PL implementation effort is approximately 280 lines of code based on the six PLs supported by
MatchFixAgent.
Similar to our control flow analyzer, we compute a similarity score between the DFGs, and

short-circuit if it falls above a threshold. The analyzer, show in Algorithm 3, first extracts def-use
chains for parameters and local variables, capturing how data values are defined, propagated, and
consumed. The extracted paths are compared using edit distance [42] as the similarity measure (lines
1–13). We again use 0.7 as the threshold, which results in approximately 35% of LLM invocations
being skipped.

3.2.3 IO Analysis. The IO Analyzer is prompted to evaluate whether the observable input-output
behavior of the source and target fragments is semantically equivalent. The prompt includes an IO
equivalence definition, which assess five dimensions: (1) semantic equivalence of accepted inputs, (2)
consistency of produced outputs, (3) preservation of side effects (e.g., file operations, network calls,
or global state modifications), (4) uniform handling of edge cases, and (5) similarity in performance-
critical complexity. The LLM is prompted also prompted to produce a plausible input that would
trigger dissimilar IO behavior if it believes the translation is inequivalent. This methodology catches
inequivalences such as differing error messages, inconsistent encoding assumptions, or missing
side effects—often overlooked by structural analyses (§3.2.1,§3.2.2) alone.

3.2.4 Library Analyzer. The Library API Analyzer is prompted to consider the behavior of external
library APIs called in the source and translation, and evaluate whether their differences result in
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inequivalent behavior. This analyzer primarily detects subtle differences between similar library
APIs in the source and translation. It provides suggestions to fix inequivalent behavior as well.

Algorithm 3: Data Flow Path Analyzer
Input :dfSource, dfTarget, fragments, model

Output :dfAnalysis

1 Function computeEditDistance (srcPath, tgtPath):

2 sim_a← 0
3 foreach 𝑥𝑃𝑎𝑡ℎ ∈ srcPath do

4 best← 0
5 foreach 𝑦𝑃𝑎𝑡ℎ ∈ tgtPath do

6 score← jaccardSimilarity (𝑥𝑃𝑎𝑡ℎ, 𝑦𝑃𝑎𝑡ℎ)
7 best← max (best, score)
8 sim_a← sim_a + best
9 sim_a← sim_a / | srcPath |

10 sim_b← "repeat loop with srcPath and tgtPath swapped"

11 return (sim_a + sim_b) / 2
12 srcPath, tgtPath← getVariablePaths (dfSource, dfTarget)
13 similarity← computeEditDistance (srcPath, tgtPath)
14 if similarity ⩾ threshold = 0.7 then
15 dfAnalysis← { "is_equivalent": "yes" }

16 else

17 dfAnalysis← LLM (dfSource, dfTarget, fragments, model)
18 return dfAnalysis

3.2.5 Exception & Error Analyzer. The Excep-
tion and Error Handling Analyzer is prompted
to validate whether error detection, excep-
tion raising, and error recovery mechanisms
in the source and target code fragments are
functionally equivalent. The prompt include
five dimensions for equivalence: (1) detecting
and handling the same error conditions, (2)
using semantically equivalent exception/er-
ror types, (3) producing equivalent error mes-
sages or codes, (4) preserving consistent re-
covery mechanisms, and (5) propagating er-
rors in equivalent ways. If neither fragment
implements explicit error handling, the an-
alyzer deems them equivalent for this di-
mension. Otherwise, it statically identifies
exception constructs (e.g., try-catch, throw,
return-error patterns) and uses LLM reason-
ing to compare semantics. For instance, if the
source raises a specific FileNotFoundError while the target raises a generic IOException, the dis-
crepancy is flagged, as it may affect upstream handling. Where differences exist, the analyzer also
recommends target-language error handling constructs that align with the source’s semantics.

3.2.6 Specifications Analyzer. The Specification Analyzer is prompted assesses whether the source
and target code fragments adhere to the same explicit or implicit functional specifications. The
prompt includes Specification equivalence definition which state that the source and translation
should: (1) fulfill the same documented or inferred functional requirements, (2) satisfy identical
pre-conditions and post-conditions, (3) maintain the same invariants, and (4) handle the same input
domain, including edge cases. The LLM is instructed to extract available specifications from function
signatures, type annotations, docstrings, and relevant comments, or, when no formal documentation
exists, infer behavioral contracts from code semantics. The LLM is asked to compare the contracts
of the source and translation. For example, if the source specifies “returns 1 on success, 0 on

failure” and the target returns Boolean values, the inconsistency is flagged. In such cases, the
LLM is instructed to produce a formalized specification that reconciles both implementations and
provides counterexamples demonstrating behavior mismatch.

3.3 Test Generator & Repair Agent
The Test Generator & Repair Agent uses an off-the-shelf LLM coding agent and the reports from the
Semantic Analyzer to write and execute tests that demonstrate functional (in)equivalence. This
agent helps catch hallucinations and confirm the claims in the Semantic Analyzer reports. The
prompt for the agent is shown in Figure 4, which includes a definition of equivalence, instructions
to write tests in both the source and target language that test the (in)equivalence of the translation,
and finally instructions to repair the translation if it is not equivalent. We use Claude Code [56]
as the agent for most of our experiments, which comes with a set of tools out of the box, namely,
reading + writing files, executing arbitrary shell commands, and searching the web. The agent
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<fragment_details>
<source_fragment_details> <path to source file> <implementation of source fragment> </source_fragment_details>
<target_fragment_details> <path to target file> <implementation of target fragment> </target_fragment_details>

</fragment_details>

<instruction>
You are an expert agent specializing in test generation and code repair. Based on the analysis from multiple expert agents
regarding functional equivalence between $SOURCE_LANGUAGE and $TARGET_LANGUAGE implementations of the given method/function,
your task is to generate tests and repair the target implementation, if necessary.
<functional_equivalence_definition>

Two code fragments in different programming languages are considered functionally equivalent if, when executed on the same
input, they always have identical program states at all corresponding points reachable by program execution, and they both
produce the same output upon termination.

</functional_equivalence_definition>
<rules_and_general_notes> 1. Consider the Semantic Analyzer results ..., 2. Generate tests ... </rules_and_general_notes>

</instruction>

<semantic_analysis_results> {"control_flow": <>, "data_flow": <>, "io": <>, "lib_api": <>, ...} </semantic_analysis_results>

<final_response_format> {"is_equivalent": <>, "explanation": <>, "tests": <>, "patch": <>, ...} </final_response_format>

Fig. 4. Prompt structure of Test Generator and Repair Agent.

outputs an overall equivalence verdict, a set of tests in both the source and target language, and a
translation patch if the agent believed the translation was not equivalent.

3.4 Verdict Agent
The final component of MatchFixAgent is the Verdict Agent, which produces a definitive as-
sessment of the translation’s correctness by synthesizing the information from the previous two
stages. The Verdict Agent takes as input the semantic analysis report and the test execution + repair
report. It leverages another LLM agent to consolidate these results into a final verdict. This agent’s
primary job is to (1) confirm the results of the Test Generator & Repair Agent, and (2) to produce a
condensed summary of the results, which is useful for end-users.

4 Evaluation
We evaluate MatchFixAgent and answer the following research questions:
RQ1: Effectiveness of MatchFixAgent in Translation Validation. To what extent can MatchFixA-

gent automatically validate repository-level code translation? How does MatchFixAgent
compare against existing validation systems?

RQ2: Effectiveness of MatchFixAgent in Translation Repair . How effective is MatchFixAgent
in repairing translation bugs from real-world projects? How does the repair component
compare with existing tools?

RQ3: Development Cost and Adaptability. How does the development cost and adaptability of
MatchFixAgent compare to existing work? Does it work with other LLMs and agents?

RQ4: Ablation Study. How do the semantic analyzer and test generator components contribute
to MatchFixAgent’s effectiveness? Can a standalone code agent perform similarly to
MatchFixAgent?

4.1 Experimental Setup
4.1.1 Benchmark. We evaluate MatchFixAgent on benchmarks used in prior work on automated
repository-level translation. Each benchmark problem is a translation pair: the source function and
the corresponding translation. The task for each benchmark problem is to give a verdict on the
functional equivalence of pairs in two different PLs, and repair translation in case of equivalence.

2Some projects in Skel (e.g., colorsys) are part of a bigger project [66]. The reported Star and Fork numbers belong to that
bigger project.
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Table 1. Details of benchmarks
2
from existing techniques used in MatchFixAgent. LoC: Lines of code in the

source project.

Tool Project

Source

Language

Target

Language

Total #

Trans. Pairs
LoC

Test

Coverage (%)
Stars Forks

Oxidizer [86]

checkdigit [71]

Go Rust

29 428 86.2 111 8
go-edlib [9] 24 639 100 517 27
histogram [16] 19 314 68.4 176 31
nameparts [51] 15 413 100 43 5
stats [18] 53 1241 98.1 2989 170
textrank [7] 52 1132 100 217 22

AlphaTrans [29]
cli [20]

Java Python
273 37841 100 372 201

csv [21] 235 33072 100 392 278
fileupload [22] 192 3567 100 246 185
validator [23] 646 41605 95.5 216 164

Skel [73]

bst [3]

Python JavaScript

19 123 100 203000 47000
colorsys [65] 8 120 96.3 67900 32300
heapq [67] 22 189 78.1 67900 32300
html [68] 44 684 65.3 67900 32300
mathgen [78] 81 735 93.8 711 183
rbt [4] 27 366 88.1 203000 47000
strsim [40] 64 654 20.8 1014 125
toml [50] 72 1206 62.5 1126 192

RustRepoTrans [47]

charset [32] Python

Rust

33 4231 100 672 56
deltachat [13] C 125 23116 98.4 306 28
iceberg-java [24] Java 25 592793 100 7700 2700
iceberg-py [25] Python 44 49746 97.7 805 327
crypto-c [19] C 20 5922 100 36 15
crypto-java [26] Java 97 110261 100 2 7

Total 2219 910398 89.6 627351 195624

Our subjects are open-source repository-level translations with equivalence verdicts available3
from the peer-reviewed literature4. We make selections across a diverse set of PL pairs.

Table 1 summarizes our subject translation pairs. We collect subjects from three recent repository-
level code translation techniques [29, 73, 86]. We did not include Syzygy [53] because its artifact
does not provide a validation system for individual functions (it only provides end-to-end tests).
These works generated translations of real-world open source GitHub projects, and performed
equivalence validation at the individual function level. Since AlphaTrans [29] is evaluated on a
large number of functions, we randomly sample 1346 of its total 4643 translation pairs5.
To demonstrate the adaptability of MatchFixAgent to more PL pairs, we also collect subjects

from RustRepoTrans [47], a benchmark consisting of human-written translations into Rust and
unit tests. We exclude translation pairs collected from the libp2p [38] projects in RustRepoTrans
due to the presence of non-deterministic flaky tests that may result in false negatives, i.e., functional
inequivalence while translation is correct, unfairly biasing comparison in favor of MatchFixAgent.
In total, we collect 2,219 translation pairs with over 900𝐾 lines of code from 24 projects and in 6
different PL pairs.

4.1.2 LLMs. Major software engineering leaderboards [8, 55] have shown that Claude Sonnet [54]
outperforms other proprietary LLMs, such as OpenAI GPT-4o [63] and Google Gemini Pro [58].
Therefore, we use Anthropic’s Claude 3.7 Sonnet [54] and Claude Code (1.0.51) [56] as themain LLM
and agent in all our experiments. To show the adaptability of MatchFixAgent to different LLMs
and agentic frameworks, we repeat a subset of experiments using OpenAI o4-mini-2025-04-16 [45]

3We exclude rule-based transpilers as they do not propose a validation mechanism, i.e., their translation is (theoretically)
correct by construction.
4This criterion excludes techniques such as RustMap [11] and C2SaferRust [44].
5AlphaTrans translated both application and test code. In this work, we only included the application code translation
pairs. While reviewing their artifacts, we also noted 11 translation pairs to be dead code and excluded them.
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Table 2. Effectiveness of MatchFixAgent in translation validation compared to existing techniques. EQ: Equiv-
alent, NEQ: Not Equivalent, VF: Validation Failure, Agreement: number and percentage of translation pairs

where MatchFixAgent’s and the existing tool’s verdicts agree, Disagreement: percentage of disagreements

ruled in favor of Tool and MatchFixAgent (Ours). VFs are excluded from Agreement and Disagreement
calculations.

Tool Project
Total #

Trans. Pairs

Tool Validation MatchFixAgent
Agreement

Disagreement

EQ NEQ VF EQ NEQ VF Tool Ours

O
xi
di
ze
r

checkdigit 29 21 (72.4) 8 (27.6) 0 (0) 22 (75.9) 7 (24.1) 0 (0) 24 (82.8) 0.0 100
go-edlib 24 18 (75) 6 (25) 0 (0) 16 (66.7) 8 (33.3) 0 (0) 14 (58.3) 11.1 88.9
histogram 19 12 (63.2) 7 (36.8) 0 (0) 11 (57.9) 7 (36.8) 1 (5.3) 8 (44.4) 20.0 80.0
nameparts 15 9 (60) 6 (40) 0 (0) 12 (80) 3 (20) 0 (0) 12 (80) 33.3 66.7
stats 53 38 (71.7) 14 (26.4) 1 (1.9) 37 (69.8) 16 (30.2) 0 (0) 35 (67.3) 0.0 100
textrank 52 40 (76.9) 12 (23.1) 0 (0) 34 (65.4) 18 (34.6) 0 (0) 28 (53.8) 42.9 57.1

Total 192 138 (71.9) 53 (27.6) 1 (0.5) 132 (68.8) 59 (30.7) 1 (0.5) 121 (63.7) 15.9 84.1

A
lp
ha

Tr
an

s cli 273 210 (76.9) 24 (8.8) 39 (14.3) 210 (76.9) 60 (22) 3 (1.1) 176 (76.2) 30.0 70.0
csv 235 97 (41.3) 61 (26) 77 (32.8) 185 (78.7) 49 (20.9) 1 (0.4) 108 (68.8) 30.0 70.0
fileupload 192 19 (9.9) 1 (0.5) 172 (89.6) 144 (75) 48 (25) 0 (0) 16 (80) 25.0 75.0
validator 646 247 (38.2) 103 (15.9) 296 (45.8) 483 (74.8) 163 (25.2) 0 (0) 225 (64.3) 20.0 80.0

Total 1346 573 (42.6) 189 (14) 584 (43.4) 1022 (75.9) 320 (23.8) 4 (0.3) 525 (69.3) 26.5 73.5

Sk
el

bst 19 19 (100) 0 (0) 0 (0) 14 (73.7) 5 (26.3) 0 (0) 14 (73.7) 20.0 80.0
colorsys 8 8 (100) 0 (0) 0 (0) 7 (87.5) 1 (12.5) 0 (0) 7 (87.5) 0.0 100
heapq 22 19 (86.4) 3 (13.6) 0 (0) 12 (54.5) 10 (45.5) 0 (0) 13 (59.1) 50.0 50.0
html 44 40 (90.9) 2 (4.5) 2 (4.5) 35 (79.5) 9 (20.5) 0 (0) 33 (78.6) 66.7 33.3
mathgen 81 77 (95.1) 4 (4.9) 0 (0) 65 (80.2) 16 (19.8) 0 (0) 67 (82.7) 50.0 50.0
rbt 27 26 (96.3) 0 (0) 1 (3.7) 23 (85.2) 4 (14.8) 0 (0) 22 (84.6) 75.0 25.0
strsim 64 50 (78.1) 0 (0) 14 (21.9) 56 (87.5) 8 (12.5) 0 (0) 44 (88) 40.0 60.0
toml 72 37 (51.4) 10 (13.9) 25 (34.7) 49 (68.1) 22 (30.6) 1 (1.4) 33 (71.7) 40.0 60.0

Total 337 276 (81.9) 19 (5.6) 42 (12.5) 261 (77.4) 75 (22.3) 1 (0.3) 233 (79.3) 46.5 53.5

Ru
st
Re

po
Tr

an
s

charset 33 20 (60.6) 13 (39.4) 0 (0) 14 (42.4) 19 (57.6) 0 (0) 25 (75.8) 75.0 25.0
deltachat 125 54 (43.2) 69 (55.2) 2 (1.6) 39 (31.2) 84 (67.2) 2 (1.6) 92 (76) 90.0 10.0
iceberg-java 25 9 (36) 16 (64) 0 (0) 3 (12) 16 (64) 6 (24) 15 (78.9) 100 0.0
iceberg-py 44 15 (34.1) 28 (63.6) 1 (2.3) 11 (25) 29 (65.9) 4 (9.1) 35 (89.7) 100 0.0
crypto-c 20 16 (80) 4 (20) 0 (0) 7 (35) 13 (65) 0 (0) 11 (55) 66.7 33.3
crypto-java 97 39 (40.2) 58 (59.8) 0 (0) 30 (30.9) 67 (69.1) 0 (0) 86 (88.7) 100 0.0

Total 344 153 (44.5) 188 (54.7) 3 (0.9) 104 (30.2) 228 (66.3) 12 (3.5) 264 (80.2) 87.5 12.5

Total 2219 1140 (51.4) 449 (20.2) 630 (28.4) 1519 (68.5) 682 (30.7) 18 (0.8) 1143 (72.8) 39.3 60.7

and Codex [64] (§4.4). To support future research and external validation, MatchFixAgent logs
the inputs, intermediate agent interactions, tool execution results, and outputs of the LLM, and
supports visualizing and inspecting these logs. MatchFixAgent terminates within the budget of
1,000 seconds. We empirically set this timeout after analyzing the execution time of 300 samples.

4.1.3 Competing Validation & Repair Tools. We compare MatchFixAgent’s validation technique
with the automated validation techniques proposed by Skel [73], Oxidizer [86], and Alpha-
Trans [29]. Except RustRepoTrans, other approaches do not explicitly report the repair results,
as the repair process is interleaved with translation in the loop. For those techniques [29, 73, 86],
we compare MatchFixAgent repair results with their final translation success.

4.1.4 MatchFixAgent Implementation. We implement our structure-based semantic analysis on
top of Tree-Sitter [72], as it supports 165+ languages, including six PLs we target in this study. For
running tests and validating patches, MatchFixAgent uses Rust 1.87.0 [70], Python 3.12.9 [69],
Java 21.0.7 [60], Node 22.16.0 [62], GCC 7.3.1 [57], and Go 1.24.4 [59].

4.2 RQ1: Effectiveness of MatchFixAgent in Translation Validation
To answer this RQ, we run MatchFixAgent on each translation pair to obtain an equivalence
verdict, and compare it with the verdict of existing tools (§4.2.1). We then investigate disagreements
between verdicts to determine which verdict is correct (§4.2.2).
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4.2.1 Translation Validation. The columns under Tool Validation and MatchFixAgent in
Table 2 summarize the equivalence verdicts for the competing validation tool and MatchFixAgent,
respectively. There are three types of equivalence verdicts: (1) Equivalent (EQ) indicating the
source function and its translation are equivalent, (2) Not Equivalent (NEQ) indicating they are
inequivalent, and (3) Validation Failure (VF) indicating that the tool failed to provide a verdict.
Competing tools can fail to provide a verdict if (1) the source project did not have unit tests covering
the function, or (2) the competing tool’s language interoperability mechanism crashes before
providing verdict. MatchFixAgent can fail to provide a verdict if the timeout limit is reached. The
Agreement column shows the number and percentage where both MatchFixAgent’s and others
verdicts agree or disagree. The Disagreement column shows the result of our human investigation
on disagreements. The Tool sub-column shows the percentage of disagreements where the existing
tool’s verdict was correct, and Ours sub-column shows the same metric for MatchFixAgent. On
average, MatchFixAgent takes 309 seconds to produce a verdict, with an average cost of $1.22
and a total cost of $2,710.45.

These results demonstrate effectiveness of MatchFixAgent in providing an equivalence verdict:
MatchFixAgent provides verdicts for 99.7% of translation pairs from AlphaTrans and Skel,
whereas these techniques report verdicts for only 56.6% and 87.5% of their studied translation pairs,
respectively. In addition, MatchFixAgent’s verdicts show a high level of agreement with all prior
work, ranging from 63.7% to 80.2%.

4.2.2 Analysis of the Disagreements. Both MatchFixAgent and existing validation approaches are
prone to false positives (i.e. the verdict is equivalent but the translation is not) and false negatives.
To determine false positives and false negatives, we perform a manual investigation.

We first categorize disagreements into two cases: 𝐷1, where MatchFixAgent produced a not
equivalent verdict and the other disagreed; and 𝐷2, where MatchFixAgent produced an equivalent

verdict and the other disagreed. Due to large number of studied translation pairs, we randomly
sample five instances of both 𝐷1 and 𝐷2 from each of the 24 projects. If a project had fewer than five
disagreements, we considered all instances without sampling. Two authors6 independently reviewed
disagreements to verify whether the not equivalent verdict was correct (by MatchFixAgent in 𝐷1
and by others in 𝐷2). If the not equivalent verdict is correct, the reviewer rules it in favor of the
tool that said not equivalent, otherwise they rule it favor of the tool that said equivalent. During
the investigation, 3 disagreements with Oxidizer were due to the tool’s function mocking not
being enabled, and were unable to enable it. In addition, 11 disagreements with RustRepoTrans
were due to the correct translation not being “1:1”, or in other words, the correct translation is
not functionally equivalent to the source function. These disagreements would have been unfairly
ruled in favor of MatchFixAgent, and so were filtered out, leaving us with 145 disagreement cases
(𝐷1 = 92, 𝐷2 = 53). When the reviewer’s resolution conflicted (18.6% of cases), they met with each
other and agreed on the final resolution.
The Disagreement columns in Table 2 summarize the result of our human investigation. The

Tool column shows the percentage of disagreements ruled in favor of the existing validation tool,
and the Ours columns shows the percentage ruled in favor of MatchFixAgent. The disagreement
resolutions show that MatchFixAgent ’s verdicts are often more accurate than existing automated
validation tools. MatchFixAgent’s verdicts are significantly more accurate than Oxidizer and
AlphaTrans— disagreements are ruled in favor of MatchFixAgent in 84.1% and 73.5% of cases,
respectively. Compared to Skel, MatchFixAgent shows similar accuracy (53.5%). On RustRepo-
Trans, MatchFixAgent’s accuracy fairs worse (12.5%), which is due to the relative complexity of
its translation pairs.
6The selected authors have total experience of 17 years in academia and 4.5 years in industry.
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Existing validation approaches produced 88 incorrect verdicts, 80 of which fell into three cate-
gories: (1) Inadequate Unit Tests (42 of cases), (2) Excessively Strict Equivalence Definition

(11 of cases), and (3) Language Interoperability Bug (27 of cases). A language interoperability
bug means that the tool’s process for converting concrete inputs in the source language to the
target language did not preserve equivalence. For example, Oxidizer’s conversion of Go runes
(which represent a Unicode character) to Rust chars resulted in different Unicode characters.

On the benchmarks associated with automated validation tools (Skel, Oxidizer, AlphaTrans),
MatchFixAgent produced 36 incorrect verdicts, 34 of which fell into three categories: (1) Hal-

lucination (23 cases), (2) Inadequate Unit Tests (4 cases) (meaning MatchFixAgent missed
an input that would demonstrate inequivalence), (3) Infeasible Input (7 cases). An infeasible
input means that the LLM discovered an input where the source function and translation produce
different outputs, but the input can never occur when the project is used as intended. Infeasible
inputs often involve directly initializing private class/struct members, or calling private helper
methods in unintended ways.

On RustRepoTrans’s benchmarks, MatchFixAgent produced 21 incorrect verdicts. Two of the
main causes are similar to the other benchmarks: (1) Hallucination (7 cases) and (2) Inadequate
Unit Tests (6 cases). The increased rates of these two causes are due to the relative complexity
and size of RustRepoTrans’s projects. The other major cause is Excessively Strict Equivalence

Definition (6 cases). As previously mentioned, RustRepoTrans’s translations include refactors
to make the translation more idiomatic, which creates ambiguity around the proper definition
equivalence.

4.2.3 Representative Examples of Incorrect Verdicts. The following code snippet shows an example
of Inadequate Unit Tests on a translation pair from Oxidizer. The functions both calculate the
edit distance between two strings. The functions are not equivalent because Go’s len() function
counts Unicode characters, whereas Rust’s .len() function counts bytes. Oxidizer incorrectly
validates the Rust translation as equivalent because the source project’s unit tests do not cover
non-ASCII inputs. However, MatchFixAgent successfully generates a test with non-ASCII inputs
demonstrating they are not equivalent.

1 ------------------- GO SOURCE CODE -------------------
2 func LCSEditDistance(str1 string, str2 string)

int {↩→
3
4 // ... if conditions ...
5 lcs := LCS(s1, s2)
6 return (len([]rune(s1)) - lcs) +

(len([]rune(s2)) - lcs)↩→
7 }

1 ------------------ RUST TRANSLATION ------------------
2 pub fn lcs_edit_distance(str1: &str, str2: &str) ->

Result<i32> {↩→
3 // ... if conditions ...
4 let lcs_len = lcs(str1, str2)?;
5 let edit_distance = (str1.len() as i32 - lcs_len)

+ (str2.len() as i32 - lcs_len);↩→
6 Ok(edit_distance)
7 }

The next code snippet demonstrates an example of an Infeasible Input taken from the textrank
project. The below Go function inserts a value into the map ranks.SentenceMap (respectively,
ranks.sentence_map for the Rust translation). MatchFixAgent discovers that these functions
return different values when the map is initially { 1 : “SomeString” } (the Go returns 0 while the
Rust returns 1). However, when the textrank is used properly via its public interface, this initial
state for the map cannot occur. The map will always contain keys from 1 to 𝑛, where 𝑛 is the
number of map entries. Under this precondition, the functions are equivalent.

1 ------------------- GO SOURCE CODE -------------------
2 func addSentence(ranks *Rank, sentence

ParsedSentence) int {,↩→
3 ranks.SentenceMap[len(ranks.SentenceMap)] =

sentence.GetOriginal()↩→
4 return len(ranks.SentenceMap) - 1
5
6 }

1 ------------------ RUST TRANSLATION ------------------
2 pub(crate) fn add_sentence(ranks: &mut Rank, sentence:

ParsedSentence) -> Result<i32, Error> {↩→
3 let sentence_id = ranks.sentence_map.len() as i32;
4 ranks.sentence_map.insert(sentence_id,

sentence.original.clone());↩→
5 Ok(sentence_id)
6 }

The next code snippet demonstrates an example of an Excessively Strict Equivalence Defini-

tion taken from the deltachat-core project. Both the C and Rust function retrieve a field blobdir.
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MatchFixAgent states that these are not equivalent because (1) the Rust function does not perform
a null check, and (2) the C function returns a copy of blobdir whereas the Rust returns a reference.
While this is true, the translation follows Rust’s idioms, and a developer would not care about these
differences. Rust’s type system prevents blobdir from ever being null, and the Rust translation
returns an immutable reference, preventing the caller from modifying the return value.

1 ------------------- C SOURCE CODE --------------------
2 char* dc_get_blobdir(const dc_context_t* context) {
3 if (context==NULL ||

context->magic!=DC_CONTEXT_MAGIC) {↩→
4 return dc_strdup(NULL);
5 }
6 return dc_strdup(context->blobdir);
7 }

1 ------------------ RUST TRANSLATION ------------------
2 pub fn get_blobdir(&self) -> &Path {
3
4
5 &self.inner.blobdir
6
7
8
9 }

Summary. Compared with existing automated validation approaches (Skel, Oxidizer,
and AlphaTrans), MatchFixAgent is more reliable at producing equivalence verdicts.
MatchFixAgent provides verdicts for 99.2% of benchmarks, compared to 71.6% for exist-
ing approaches. In addition, MatchFixAgent’s verdicts are more accurate than existing
approaches. MatchFixAgent’s verdicts agree on 72.8% of benchmarks, and on 60.7% of
disagreements, human investigation shows MatchFixAgent’s verdict is correct. On the
more challenging benchmarks of RustRepoTrans, MatchFixAgent’s verdict still show a
high agreement rate, but the disagreement cases reveal for improvement.

4.3 RQ2: Effectiveness of MatchFixAgent in Translation Repair
We investigate the effectiveness of MatchFixAgent in automated repair of translation bugs, and
its ability to improve code coverage of existing projects. Table 3 shows the results of this research
question. To fairly evaluate the effectiveness of existing tools and MatchFixAgent in translation
repair, we extract a subset of translations where both techniques generated a patch.
In total, 265

2219 (11.9%) buggy translations were considered for our study. To validate patches, we
used original project tests that previously failed on buggy translations, and only considered a
patch correct when all failing tests passed. We did not use generated tests by MatchFixAgent
to avoid bias in our evaluation. Column Tool Repaired shows the number of buggy translations
repaired by existing techniques. Only 49

265 (18.5%) bugs have been repaired by prior techniques.
Except for RustRepoTrans [47], other code translation tools failed to generate correct patches to
repair translation bugs. Skel [73] reprompts the same LLM for repairing bugs, but then requires a
user to manually provide a fix. AlphaTrans [29] and Oxidizer [86] generates patches in the loop,
however, no effectiveness were reported in their papers, andwe could not repair any translation bugs
using their tools. Moreover, patches by AlphaTrans and Oxidizer could not be validated mostly
because of limitations in their validation system. For example, the following code snippets show
instance 11 from the project commons-validator in AlphaTrans. The GraalVM-based validation
system in AlphaTrans does not validate this translation as functionally equivalent, although our
manual investigation indicates that the Python translation is correct. Therefore, the limitation in
AlphaTrans is mostly due to its validation system being unable to validate LLM patches.

1 ------------------ JAVA SOURCE CODE ------------------
2 public boolean isOn(long flag) {
3 return (this.flags & flag) == flag;
4 }

1 ----------------- PYTHON TRANSLATION -----------------
2 def isOn(self, flag: int) -> bool:
3
4 return (self.__flags & flag) == flag

ColumnMatchFixAgent Repaired shows the number of translation bugs successfully repaired by
our approach. In total, MatchFixAgent repaired 134

265 (50.6%) of translation bugs, 32.1% more than
existing reprompting-based techniques. Given the limitations in validation system of AlphaTrans
discussed earlier, we manually investigate and validate patches from this tool. The following code
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Table 3. Effectiveness of MatchFixAgent in translation repair compared against existing techniques. NEQ:
Not Equivalent, NR: Not Reported/Repaired.

Tool Project

# Total

Trans. Pair

Tool NEQ ∩
MatchFixAgent NEQ

Tool

Repaired

MatchFixAgent

Repaired

Disagreement

Repaired

Coverage

(Improvement) %

O
xi
di
ze
r

checkdigit 29 5 (17.2) NR 5 (100) 2 (100) 86.2 (0)
go-edlib 24 2 (8.3) NR 1 (50) 4 (100) 100 (0)
histogram 19 2 (10.5) NR 1 (50) 2 (66.7) 68.4 (0)
nameparts 15 3 (20) NR 1 (33.3) 0 (0) 100 (0)
stats 53 6 (11.3) NR 6 (100) 5 (100) 100 (↑1.9)
textrank 52 3 (5.8) NR 3 (100) 2 (100) 100 (0)

Total 192 21 (10.9) 0 (0) 17 (81) 15 (93.8) 92.4 (↑0.3)

A
lp
ha

Tr
an

s cli 273 9 (3.3) NR 7 (77.8) 3 (100) 100 (↑6.2)
csv 235 20 (8.5) NR 16 (80) 2 (100) 100 (↑11.9)
fileupload 192 0 (0) - - 2 (100) 98.9 (↑78.1)
validator 646 34 (5.3) NR 23 (67.6) 3 (100) 99.3 (↑36.8)

Total 1346 63 (4.7) 0 (0) 46 (73) 10 (100) 99.6 (↑33.3)

Sk
el

bst 19 0 (0) - - 4 (100) 100 (0)
colorsys 8 0 (0) - - 1 (100) 100 (0)
heapq 22 2 (9.1) NR 1 (50) 3 (100) 100 (0)
html 44 1 (2.3) NR 0 (0) 2 (100) 100 (↑4.5)
mathgen 81 3 (3.7) NR 1 (33.3) 2 (66.7) 100 (0)
rbt 27 0 (0) - - 1 (100) 100 (↑3.7)
strsim 64 0 (0) - - 3 (100) 100 (↑21.9)
toml 72 5 (6.9) NR 3 (60) 3 (100) 100 (↑34.7)

Total 337 11 (3.3) 0 (0) 5 (45.5) 19 (95) 100 (↑8.1)

Ru
st
Re

po
Tr

an
s

charset 33 12 (36.4) 5 (41.7) 7 (58.3) 1 (100) 100 (0)
deltachat 125 60 (48) 10 (16.7) 11 (18.3) 1 (100) 100 (↑1.6)
iceberg-java 25 12 (48) 1 (8.3) 1 (8.3) 0 (0) 100 (0)
iceberg-py 44 25 (56.8) 4 (16) 6 (24) 0 (0) 100 (↑2.3)
crypto-c 20 4 (20) 1 (25) 2 (50) 1 (100) 100 (0)
crypto-java 97 57 (58.8) 28 (49.1) 39 (68.4) 0 (0) 100 (0)

Total 344 170 (49.4) 49 (28.8) 66 (38.8) 3 (100) 100 (↑0.6)
Total 2219 265 (11.9) 49 (18.5) 134 (50.6) 47 (95.9) 98.1 (↑ 8.5)

snippets demonstrate instance 276 from the project commons-validator in AlphaTrans which its
reprompting-based repairing could not generate a correct patch. By contrast, MatchFixAgent
successfully repairs this translation bug with the help of its Library Analyzer (§3.2.4). The report
generated by this semantic analyzer indicate "... the standard Python datetime.date class does

not have a SHORT attribute ..." which is correct. The Test Generator & Repair Agent (§3.3) then
leverages this analysis and successfully generate a patch by replacing SHORT with constant 3.

1 ------------------ JAVA SOURCE CODE ------------------
2 public static DateValidator DateValidator1() {
3 return new DateValidator(true, DateFormat.SHORT);
4 }

1 ----------------- PYTHON TRANSLATION -----------------
2 def DateValidator1() -> DateValidator:
3 - return DateValidator(True, datetime.date.SHORT)
4 + return DateValidator(True, 3)

Column Disagreement Repaired show the number of disagreements from RQ1 (§4.2) which
MatchFixAgent determined as not equivalent and successfully generated a correct patch. Of the
49 disagreements resolved in favor of MatchFixAgent, we further asked our manual investigators
if the generated patch was correct or not. On average, 47

49 (95.9%) of patches were validated as
correct. Notice that this column cannot be directly compared with existing techniques, because they
validated disagreements as functionally correct and did not generate any patches. Moreover, Column
Coverage indicate the overall coverage for subject projects and the total improvement as a result
of tests generated by MatchFixAgent. The generated tests help improve code coverage by 8.5%
(from 89.6% to 98.1%). Project commons-fileupload from AlphaTrans sees the most improvement
(78.1%), with most of its translated fragments now validated with MatchFixAgent tests.

Summary. MatchFixAgent patches fix 50.6% of translation bugs, 32.1% more than existing
repair techniques. Its generated target PL tests addresses the inadequate test suite limitation
in prior work and help improve code coverage by 8.5%.
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4.4 RQ3: Development Cost and Adaptability
In this RQ, we demonstrate the development cost of MatchFixAgent (§4.4.1) and its adaptability
with other LLMs and agentic frameworks (§4.4.2).
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Fig. 5. Development cost of MatchFixAgent compared

against existing tools.

4.4.1 Development Cost. Figure 5 shows the
development cost of MatchFixAgent against
existing techniques. We define cost as the tool’s
total lines of code (LoC). As illustrated in the fig-
ure, developing MatchFixAgent is cheap and
the initial version only consists of 1,650 LoC,
supporting 6 different PLs. Its dependence only
on the Tree-Sitter [72] parser makes it easy to
support more languages using only 280 LoC. By
contrast, other tools, such as, Skel [73], Alpha-
Trans [29], and Oxidizer [86] only support
one PL pair and require significant engineer-
ing effort to adapt to more languages. More
precisely, MatchFixAgent is ×2.3, ×6.6, and
×11.6 cheaper than Skel, AlphaTrans, and
Oxidizer, respectively. The static nature of MatchFixAgent makes it cost-effective and scalable,
achieving better performance and revealing major limitations in existing tools.

4.4.2 Adaptability. The architecture of MatchFixAgent is largely independent of any specific
LLM or agent framework, making it easy to extend and integrate with more LLMs. In this research
question, we investigate the extent to which replacing Anthropic’s Claude 3.7 Sonnet with OpenAI
o4-mini-2025-04-16 [45], and Claude Code with Codex [64] agent, impacts the performance of
MatchFixAgent. Due to the limited cost budget, we randomly sampled 96 instances from all subject
projects. While sampling, we controlled for equal contribution of equivalent and non-equivalent
translations, resulting in 58 and 38 samples for each, respectively.
Figure 6 illustrates the results of this study. Our analysis indicates that MatchFixAgent with

Claude Code and Codex agrees 73% of the time against existing validation systems. Moreover, we
also analyzed both agents’ behavior in terms of problem understanding and finding a solution. Our
investigation of agent trajectories (footprint of agent actions) shows OpenAI’s Codex makes fewer
actions to explore the codebase, and attempts to provide a decision faster. By contrast, Anthropic’s
Claude Code agent first plans and reasons thoroughly about its tasks, specifically called TODO List
by the agent, and then takes specific actions to perform each of its planned tasks.

Summary.MatchFixAgent is up to×11.6 times cheaper to develop than existing techniques.
Also, it can be easily adapted to other LLMs and agent frameworks, e.g., OpenAI.

4.5 RQ4: Ablation Study
We present two ablation studies to highlight the contribution of the semantic analyzer and the test
generator agent in MatchFixAgent.

4.5.1 Impact of Semantic Analyzer and Test Generator Agent. To investigate the importance of
semantic analyzer and test generator agent in MatchFixAgent, we evaluated a standalone baseline
agent that uses the same LLM and agent framework, e.g., Claude Sonnet 3.7 [54] and Claude
Code [56]. In order to perform a controlled study, we created a sample from the original dataset
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where existing tools and MatchFixAgent verdicts agree with each other, meaning we collected all
non-dispute instances. In total, 1,091 instances, 862 equivalent, and 229 non-equivalent translations
were selected.
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Figure 7 shows the result of this ablation study. Ac-
curacy indicates the ratio of baseline verdicts that agree
with the existing tool and MatchFixAgent. On aver-
age, the validation accuracy drops by 42.3%, illustrating
the importance of MatchFixAgent’s semantic analyzer
and test generator components. Across all projects, the
baseline agent only reproduced MatchFixAgent and
tool results in the histogram project from Oxidizer [86],
achieving 100% validation correctness. For the remaining
projects, the agent’s accuracy dropped as low as 25% in
iceberg-java, which is the project with the largest num-
ber of lines of code. This study confirms that without
semantic guidance and in-the-loop test generation, the
LLM agents often fail to distinguish subtle differences and
validate functional equivalence, especially when projects
become larger and more restrictive languages, such as
Rust are involved in the translation.

4.5.2 Impact of Semantic Analyzer. We perform another
study by removing only the semantic analysis results when prompting the test generator and verdict
agents. We use the same set with 1,091 instances from the previous ablation to perform this study.
Figure 8 illustrates the result of our second ablation. The results indicate that the performance of
MatchFixAgent significantly drops by 39.7% without the six semantic analyses. Furthermore, we
observe that the test generator agent without semantic analyzer is more costly and on average
spends 3.9% (66.3𝐾 instead of 63.7𝐾), 6.2% (136𝐾 instead of 128𝐾), 4.2% (9.4𝑀 instead of 9.0𝑀),
and 7.5% (61.28ℎ instead of 56.71ℎ) more turns/interactions, input tokens, output tokens, and time,
respectively. This is expected since the purpose of semantic analysis is to provide the necessary
context for the test generator agent, without the need for the agent to explore and figure it out for
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itself. Since each semantic analysis is a single call to the LLM, it is much cheaper than the agents
that iteratively analyze the codebase.

Summary. Removing the semantic analyzer and test generator significantly drops the
effectiveness of MatchFixAgent by 42.3%. Moreover, removing the semantic analyzer alone
decreases the accuracy by 39.7%, and increases the test generator cost, on average, by 5.4%.

5 Related Work
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Fig. 8. Removing the semantic analyzer de-

creases the effectiveness of MatchFixAgent,

while increasing token consumption, num-

ber of turns, and processing time.

Translation Validation and Repair. Existing auto-
mated translation validation techniques either rely on
test execution [29, 47, 49, 53, 81, 85, 86, 88], formal
methods [43, 82], or fuzzing [17] for translation vali-
dation. Abid et al. [1] and AlphaTrans [29] leverage
GraalVM [46] and language interoperability to execute
code in both source and target PL for translation vali-
dation. Other tools like Oxidizer [86] and Syzygy [53]
instrument programs to extract input-output pairs and
use in target PL for validation. Skel [73] validates trans-
lations through test execution by converting Python tests
to JavaScript simply through string replacement. This suf-
fices since source Python tests are simple function calls
and value comparisons. For automated translation repair,
most tools [29, 47, 49, 53, 73, 85, 86] rely on simple re-
prompting of LLMs with execution feedback, which has
proven ineffective. Specifically, AlphaTrans [29] per-
forms independent reprompting of suspicious fragments
based on execution trace, while Skel [73] requires a user
for manually repairing translation bugs.
LLM Agents. With the increasing prominence of agent-based frameworks [39, 79], recent re-
search and industrial efforts have turned towards leveraging these frameworks to address various
software engineering tasks [14, 33, 84]. SWE-agent [83] introduces a specialized agent-computer
interface (ACI) facilitating agent interaction with code repositories via file reading, editing, and
execution of bash commands. AutoCodeRover [87], which provides LLM agents with specialized
code-search APIs, enables iterative retrieval and localization of code segments associated with bugs.
SpecRover [52] enhances AutoCodeRover by emphasizing specification inference, generating
function summaries, and providing targeted feedback at crucial agent execution stages. Agent-
less [80] further shows simple LLM agents can fix real-world bugs without using excessive tools
and model complex environment behavior. Besides these state-of-the-art frameworks, numerous
additional agent-based approaches exist both in open-source [2, 10, 48, 61, 77] and commercial
products [5, 15, 74].

6 Threats to Validity
Similar to prior techniques, MatchFixAgent comes with some limitations and threats to the
validity. In this section, we discuss how we mitigated various threats.
Internal Validity. There are two main threats to internal validity. First, we only run experiments
once. Since LLMs are inherently non-deterministic, running experiments again may produce
different results. While it is highly likely some individual equivalence verdicts and repair results
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would change if experiments were run again, it is highly unlikely the aggregate metrics we report
would change significantly given the large number of translation samples we use (2,219 pairs).
Second, our human investigation does not assess ground truth equivalence. We only assess whether
an inequivalent verdict was correct, but we do not analyze the correctness of equivalent verdicts.
While this means we don’t have any measure of true accuracy of MatchFixAgent, we still can
claim MatchFixAgent is more accurate than existing automated validation techniques.
External Validity. One main external threat is the generalizability of our approach. Our validation
and repair system is very generic and can be extended to more PL pairs with minimal engineering
effort. Also, the majority of tools that we used, for example, Tree-Sitter [72] can support a large set
of PLs. To mitigate external validity, we built the initial version of MatchFixAgent with six PLs.
Construct Validity. In order to minimize construct validity, MatchFixAgent is built on well-
known and rigorously tested tools, e.g., Tree-Sitter, Claude Code, and Codex.

7 Conclusion
In this work, we presented MatchFixAgent, a language-agnostic neuro-symbolic technique which
combines the power of program analysis and LLM agents for autonomous repository-level trans-
lation validation and repair. MatchFixAgent performs various semantic analyses—including
control-flow and data-flow analyses—to systematically generate targeted tests, enabling demon-
stration of functional equivalence or detection of semantic bugs. Through rigorous evaluation
on multiple benchmarks and different language-pairs, we show MatchFixAgent is effective in
automatically validating and repairing translation pairs. It further generates high-quality reports
that can be used by end-users for better understanding of translated programs and the validation
process. Our manual investigation of generated reports reveals significant limitation of existing
techniques in code translation validation and repair. MatchFixAgent is cost-effective and scalable,
it only requires on average 280 lines of code to support more PLs and it validates each instance in
approximately 5 minutes. To the best of our knowledge, MatchFixAgent is the first approach that
can effectively validate and repair translations in repository-level across multiple PLs.
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