Program Decomposition and Translation with Static Analysis

Ali Reza Ibrahimzada
alirezai@illinois.edu
University of Illinois Urbana-Champaign
Champaign, IL, USA

ABSTRACT

The rising popularity of Large Language Models (LLMs) has mo-
tivated exploring their use in code-related tasks. Code LLMs with
more than millions of parameters are trained on a massive amount
of code in different Programming Languages (PLs). Such models
are used for automating various Software Engineering (SE) tasks
using prompt engineering. However, given the very large size of
industry-scale project files, a major issue of these LLMs is their
limited context window size, motivating the question of "Can these
LLMs process very large files and can we effectively perform prompt
engineering?". Code translation aims to convert source code from
one PL to another. In this work, we assess the effect of method-level
program decomposition on context window of LLMs and investi-
gate how this approach can enable translation of very large files
which originally could not be done due to out-of-context issue. Our
observations from 20 well-known java projects and approximately
60K methods suggest that method-level program decomposition
significantly improves the limited context window problem of LLMs
by 99.5%. Furthermore, our empirical analysis indicate that with
method-level decomposition, each input fragment on average only
consumes 5% of the context window, leaving more context space
for prompt engineering and the output. Finally, we investigate the
effectiveness of a Call Graph (CG) approach for translating very
large files when doing method-level program decomposition.

ACM Reference Format:

Ali Reza Ibrahimzada. 2024. Program Decomposition and Translation with
Static Analysis. In 2024 IEEE/ACM 46th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion "24), April 14-20, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3639478.3641226

1 INTRODUCTION

Machine learning has been widely used for automating various
data-related tasks, and software engineering automation is no ex-
ception [1, 4, 10-12]. A subset of these machine learning tools called
LLMs have shown significant improvements in several code related
tasks [3, 5, 14, 15, 19, 20, 23, 26-28]. Prompt engineering constitutes
a pivotal element contributing significantly to the achievements of
recent LLMs [30]. However, context window, which contains both
prompt to the LLM and the response to the prompt from the LLM, is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-Companion °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04...$15.00
https://doi.org/10.1145/3639478.3641226

limited. So, prompt crafting, i.e., providing the minimum amount of
information to maximize the gain from the LLM response, is crucial.
This is not a certain issue for small programs consisting of short
methods. However, industry-scale software is typically large and
complex, with a lot of dependencies between different components.
This work performs a large-scale study to investigate the effect
of method-level program decomposition on the context window
of LLMs. More specifically, our early experimental results from
20 well-maintained Apache [6] projects and roughly 60K methods
demonstrate that real-life industry-scale software is very large and
mostly cannot be processed by LLMs, demanding the necessity
of fine-grained program decomposition techniques. Moreover, we
show that when programs without decomposition fit in the context
window of LLMs, they consume the majority of the context, leaving
very little space for prompt engineering and the output. In contrast,
method-level program decomposition improves the out-of-context
issue of LLMs by 99.5% with only consuming 5% of the context win-
dow which ultimately enables processing of very large input files.
Lastly, we perform a qualitative study on Apache Commons CLI [7]
project when translating it using a CG approach to investigate the
effectiveness of method-level program decomposition.

2 BACKGROUND

Large Language Models (LLMs) have been extensively used in the
domain of Natural Language Processing (NLP) and Programming
Language Processing (PLP), achieving state-of-the-art performance
in different tasks such as classification [29], translation [21], auto-
mated program repair [27], summarization [17]. Prompt engineer-
ing involves providing the LLMs with minimal context to enhance
their performance on any target task [30]. Recent studies have
shown prompt crafting can significantly improve the quality of
LLM responses [19, 22, 28]. Given the limited context window of
state-of-the-art LLMs, effective decomposition of programs become
an essential step when processing very large input files. Existing
techniques on program decomposition involve program slicing [24].
Starting from a subset of a program’s behavior, slicing reduces that
program to a minimal form which still produces that behavior. Each
program fragment after slicing is independent and it should guaran-
tee to represent the behavior of the original program. Another class
of slicing techniques leverage dependency graph for decomposing
very large programs [13]. These techniques mostly use flow graphs
(CFG, DFG,) for decomposing programs into smaller fragments.

3 APPROACH

In this section, we will discuss our technique for better program
decomposition and translation using static analysis. This work per-
forms a large-scale study to answer three main research questions
(RQs). First, we were interested to understand if industry-scale real-
life projects can fit in the context window of widely used LLMs. To

https://doi.org/10.1145/3639478.3641226
https://doi.org/10.1145/3639478.3641226
https://doi.org/10.1145/3639478.3641226

ICSE-Companion ’24, April 14-20, 2024, Lisbon, Portugal

Table 1: The effect of method-level program decomposition
on a 2K context window model. The analysis has been done
on 20 well-known Apache Commons projects.

. % Files Avg. Tokens % Methods % 2K
Project >2K Tokens # Methods / %’Iethod >2K Tokens Context
bcel 11.29% 4,094 70.42 0.15% 3.44%
beanutils 29.84% 2,675 107.09 0.07% 5.23%
cli 30.77% 582 97.91 0.17% 4.78%
codec 48.30% 1,788 189.29 0.84% 9.24%
collections 19.34% 6,354 74.37 0.02% 3.63%
csv 27.08% 871 102.53 0.11% 5.01%
daemon 27.78% 60 108.63 0.00% 5.30%
dbep 38.52% 3,622 63.02 0.03% 3.08%
dbutils 13.54% 869 61.44 0.00% 3.00%
fileupload 16.67% 401 77.8 0.00% 3.80%
geometry 39.13% 6,615 124.93 0.03% 6.10%
imaging 14.78% 2530 143.71 0.20% 7.02%
io 22.07% 5,957 77.94 0.07% 3.81%
jexl 25.70% 3,967 109.37 0.20% 5.34%
lang 40.34% 9,134 103.33 0.12% 5.05%
net 23.83% 2,023 98.22 0.15% 4.80%
pool 22.68% 1,377 94.13 0.00% 4.60%
mg 36.60% 3,245 139.69 0.52% 6.82%
text 28.32% 2,712 99.85 0.04% 4.88%
validator 38.00% 1,181 147.42 0.17% 7.20%
Average 27.73% 3002.85 104.55 0.14% 5.11%

answer this question, we downloaded 20 well-maintained projects
from Apache [6], located each stand-alone . java file from these
projects and extracted their content. Next, we used the tokenizer of
a widely-used open-source LLM called StarCoder [16] to tokenize
the content of each file, and measure the number of files which do
not fit in a 2K context window. We decided to compare all inputs
against a 2K context size because most recent state-of-the-art LLMs
come with a window size of 2048 tokens [2, 8, 16, 18]. Second, we
wanted to investigate if method-level program decomposition can
help with out-of-context problem of LLMs, and if effective prompt
engineering is possible when encoding the decomposed method
fragments. To address this concern, we performed static analysis on
downloaded projects using CodeQL [9] to decompose each class in
the projects into method fragments. As mentioned above, we used
the same StarCoder tokenizer for tokenizing method fragments
and measured the average number of tokens per method and the
number of method fragments which do not fit in a 2K context win-
dow. For effective prompt engineering, we measured the amount
of context size each method fragment on average would consume
after decomposition. That is, the less space consumed by the in-
put would enhance the performance of the model, leaving more
context size for prompt engineering and output tokens. Third, we
wanted to see if a program decomposition technique can help a
simple translation approach in translating project-level programs.
We used CodeQL for extracting the CG of each file and created a
call dependency graph. Next, we implemented a simple translation
technique which leverages the CG and translates the methods in a
bottom-up manner. This approach makes sure to translate pure and
independent method fragments first, and more dependent ones later
by providing contextual information about independent methods.

4 EVALUATION

This section presents the results for our RQs. Our first RQ aims
at understanding if industry-scale software can fit in the context
window of recent LLMs. Column 2 under Table 1 shows the results

Ali Reza Ibrahimzada

Table 2: The effectiveness of method-level decomposition
when translating Apache Commons CLI using its Call Graph.

Decomposition # Source # Out-of-Context % Context
Technique Files Inputs Occupied
No Decomposition 22 8 36%
Method Decomposition 22 0 3%

for this study. As shown in the table, we observe roughly 30%
(min=11.29% and max=48.30%) of input files from real-life projects
do not fit in a 2K context window model. That is, one-third of files
not only fits in the context window, they also do not leave any space
for prompt engineering and new output generation. These results
indicate an important problem of encoding very large programs
by LLMs. To address this issue, we propose method-level program
decomposition and discuss our results in RQ2.

Columns 3-6 in Table 1 show the results of RQ2. Motivated by the
modularity of large-scale software, i.e., methods tend to be shorter
and perform a single function, we decompose each . java file in
the projects to a set of method fragments in order to address the
out-of-context problem of LLMs. On average, each Apache project
contains roughly 3,000 methods under source and test directories,
with each method consisting of approximately 100 tokens. Doing
such decomposition, we make sure that each fragment is indepen-
dent and contains a subset of original program behavior as promised
in program slicing [24]. As indicated in Table 1, method-level pro-
gram decomposition improves the out-of-context problem by nearly
99.5% (27.73% down to 0.14%), enabling encoding and processing of
very large input files, which otherwise cannot be done due to their
huge sizes. Furthermore, our proposed decomposition technique
not only addresses the out-of-context issue, it also creates fragments
which on average only consume 5% of a 2K context window model.
This will improve the quality of generated responses as LLMs tend
to work well for shorter and well-engineered prompts [25].

In our last RQ, we wanted to investigate if our proposed decom-
position technique can be incorporated with an SE task, i.e., code
translation, to enable translation of large input files. Table 2 shows
a qualitative analysis when translating the source files of Apache
Commons CLI [7] with method-level decomposition using its CG.
We used an open-source model, i.e, StarCoder [16] for doing the
translation. As shown in the table, vanilla translation of each file
without any decomposition technique results in out-of-context er-
ror of 8 files. In contrast, when using method-level decomposition,
all source files can be translated without any problems, by only
consuming 3% of context size (a 12x improvement compared to no
decomposition). Moreover, it is important to note that, our work in
this paper focuses on enabling translation of large files, rather than
correctly translating them which is a challenging problem by itself.
Therefore, we do not validate the correctness of translations.

5 CONCLUSION

Program decomposition of large programs is essential for better
prompt engineering of LLMs. In this work, we show that doing
method-level program decomposition and CG-based translation
enables translating of large input files. As part of our future work,
we will explore how our approach can be combined with other
techniques such as slicing and dependency graph decomposition.

Program Decomposition and Translation with Static Analysis

REFERENCES

(1]
(2]

[9
[10
(1]
[12]

[13]

[14

[15

[16]

=
=

(18]

[19]

[20]

[21

oo
0

[23

[24]

[25

[26

[27

Open AL 2023. Open AI ChatGPT. https://openai.com/blog/chatgpt

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher
Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu,
Manan Dey, et al. 2023. SantaCoder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988 (2023).

Saikat Chakraborty, Shuvendu K Lahiri, Sarah Fakhoury, Madanlal Musuvathi,
Akash Lal, Aseem Rastogi, Aditya Senthilnathan, Rahul Sharma, and Nikhil
Swamy. 2023. Ranking LLM-Generated Loop Invariants for Program Verification.
arXiv preprint arXiv:2310.09342 (2023).

Cursor. 2023. Cursor Code Editor. https://cursor.sh/

Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K Lahiri. 2022.
Toga: A neural method for test oracle generation. In Proceedings of the 44th
International Conference on Software Engineering. 2130-2141.

The Apache Software Foundation. 2023. Apache. https://github.com/apache
The Apache Software Foundation. 2023. Apache Commons CLL https://github.
com/apache/commons-cli

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

GitHub. 2023. CodeQL. https://codeql.github.com/

GitHub. 2023. GitHub Copilot. https://github.com/features/copilot

Google. 2023. Google Bard. https://bard.google.com/

Google. 2023. Google PaLM. https://ai.googleblog.com/2022/04/pathways-
language-model-palm-scaling-to.html

S. Horwitz, T. Reps, and D. Binkley. 1988. Interprocedural Slicing Using De-
pendence Graphs. In Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation (Atlanta, Georgia, USA)
(PLDI ’88). Association for Computing Machinery, New York, NY, USA, 35-46.
https://doi.org/10.1145/53990.53994

Ali Reza Ibrahimzada, Yang Chen, Ryan Rong, and Reyhaneh Jabbarvand. 2023.
Automated Bug Generation in the era of Large Language Models. arXiv preprint
arXiv:2310.02407 (2023).

Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand.
2022. Perfect is the enemy of test oracle. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 70-81.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).
Yang Liu. 2019. Fine-tune BERT for extractive summarization. arXiv preprint
arXiv:1903.10318 (2019).

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lam-
bert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh
Sinha, and Reyhaneh Jabbarvand. 2024. Lost in Translation: A Study of Bugs
Introduced by Large Language Models while Translating Code. arXiv preprint
arXiv:2308.03109 (2024).

Md Mahbubur Rahman, Ira Ceka, Chengzhi Mao, Saikat Chakraborty, Baishakhi
Ray, and Wei Le. 2023. Towards Causal Deep Learning for Vulnerability Detection.
arXiv preprint arXiv:2310.07958 (2023).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. Advances in neural information processing systems 27
(2014).

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and Heng Ji. 2023. LeTI: Learn-
ing to Generate from Textual Interactions. arXiv preprint arXiv:2305.10314 (2023).
Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. 2023. Copiloting the
Copilots: Fusing Large Language Models with Completion Engines for Automated
Program Repair. arXiv preprint arXiv:2309.00608 (2023).

Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software Engineering
SE-10, 4 (1984), 352-357. https://doi.org/10.1109/TSE.1984.5010248

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt
pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382 (2023).

Chungiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Ling-
ming Zhang. 2023. Universal fuzzing via large language models. arXiv preprint
arXiv:2308.04748 (2023).

Chungiu Steven Xia and Lingming Zhang. 2022. Less training, more repairing
please: revisiting automated program repair via zero-shot learning. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 959-971.

ICSE-Companion 24, April 14-20, 2024, Lisbon, Portugal

[28] Chungqiu Steven Xia and Lingming Zhang. 2023. Conversational automated
program repair. arXiv preprint arXiv:2301.13246 (2023).

[29] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems 32 (2019).

[30] Qinyuan Ye, Maxamed Axmed, Reid Pryzant, and Fereshte Khani. 2023. Prompt
Engineering a Prompt Engineer. arXiv:2311.05661 [cs.CL]

https://openai.com/blog/chatgpt
https://cursor.sh/
https://github.com/apache
https://github.com/apache/commons-cli
https://github.com/apache/commons-cli
https://codeql.github.com/
https://github.com/features/copilot
https://bard.google.com/
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://doi.org/10.1145/53990.53994
https://doi.org/10.1109/TSE.1984.5010248
https://arxiv.org/abs/2311.05661

	Abstract
	1 Introduction
	2 Background
	3 Approach
	4 Evaluation
	5 Conclusion
	References

