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Bugs are essential in software engineering; many research studies in the past decades have been proposed
to detect, localize, and repair bugs in software systems. Effectiveness evaluation of such techniques requires
complex bugs, i.e., those that are hard to detect through testing and hard to repair through debugging. From
the classic software engineering point of view, a hard-to-repair bug differs from the correct code in multiple
locations, making it hard to localize and repair. Hard-to-detect bugs, on the other hand, manifest themselves
under specific test inputs and reachability conditions. These two objectives, i.e., generating hard-to-detect and
hard-to-repair bugs, are mostly aligned; a bug generation technique can change multiple statements to be
covered only under a specific set of inputs. However, these two objectives are conflicting for learning-based
techniques: A bug should have a similar code representation to the correct code in the training data to
challenge a bug prediction model to distinguish them. The hard-to-repair bug definition remains the same
but with a caveat: the more a bug differs from the original code (at multiple locations), the more distant their
representations are and easier to be detected.

We propose BugFarm, to transform arbitrary code into multiple complex bugs. BugFarm leverages Large
Language Models (LLMs) to mutate code in multiple locations (hard-to-repair). To ensure that multiple
modifications do not notably change the code representation, BugFarm analyzes the attention of the underlying
model and instructs LLMs to only change the least attended locations (hard-to-detect). Our comprehensive
evaluation of 320𝑘+ bugs from over 2.5𝑀 mutants generated by BugFarm and two alternative approaches
demonstrates our superiority in generating bugs that are hard to detect by learning-based bug prediction
approaches (up to 41% higher False Negative Rate and 11%, 6%, 29%, and 21% lower Accuracy, Precision, Recall,
and F1 score) and hard to repair by state-of-the-art learning-based program repair technique (22% repair
success rate compared to 34% and 49% of LEAM and 𝜇BERT bugs). BugFarm is efficient, i.e., it takes nine
seconds for it to mutate a code without any prior training time.

1 INTRODUCTION

Problem Statement and Significance. Machine learning is becoming the new automation tech-
nology, and software engineering automation is no exception. AI pair programming techniques
such as Copilot [24] are integrated into IDEs, and LLMs such as GPT-4 [48] and Bard [25] are now
accessible through API. Following this trend, state-of-the-art software analysis techniques either
fine-tune pre-trained code-language models or prompt LLMs to automate code-related tasks 1. This
demands automated techniques for generating high-quality datasets to assess their true effective-
ness. Concerning bug-related tasks such as bug prediction, localization, and repair, such datasets
should include a diverse set of complex bugs, i.e., those that are hard to detect to challenge bug
prediction techniques and hard to repair for debugging approaches.
From the classic software engineering perspective, hard-to-detect bugs often exist at locations

reachable only under a particular combination of test inputs or edge cases [9, 40]. A similar definition
∗Work done when Ryan Rong was an intern at the University of Illinois Urbana-Champaign.
1We differentiate between LLMs and code-language models. The former models are large (> 10𝐵 parameters) and are used
through zero- or few-shot prompting. The latter models are smaller and are used after fine-tuning.
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does not stand concerning learning-based bug prediction techniques. That is because they do not
care what inputs trigger the bug in the given code. In contrast, they look for bug patterns in their
training/fine-tuning data [68] or to check if the code representation is closer to buggy or correct
examples they have seen [30]. As a result, to challenge the learning-based bug prediction techniques,
one should inject unseen bug patterns such that the code representation of the generated bug and
correct code are similar.

Hard-to-repair bugs usually involve multiple statements, making debugging techniques struggle
to localize and understand their interactions [38] to fix them automatically. A similar definition
holds from the learning-based software engineering, but with a slight consideration: The power of
machine learning is in learning from patterns that persist in their dataset. Consequently, modifying
a code in multiple locations, where the learning-based debugging techniques specifically look to
localize or repair the bug, would be counter-intuitive. Can existing techniques provide complex
bugs, as defined, to evaluate learning-based techniques?
Research Gap. Several attempts have been made to construct real-world bug datasets, e.g.,

Defects4J [34], BugSwarm [60], BugsInPy [13], RegMiner [57], and ManySStuBs4J [2]. While
representing real-world bugs, such datasets are only limited to the projects and bug patterns
included in their mining efforts. More importantly, they may be included in the training/fine-
tuning data of learning-based techniques, causing data leakage [54]. To overcome these limitations,
researchers have proposed automated bug generation techniques [32, 36, 59]. Such techniques,
by default, change a few locations in the code (easy to repair and detect) but can be configured
to modify multiple lines. That said, changing multiple lines randomly [36] or following a set of
heuristics [59] may result in mutants with a different code representation than the correct code,
making them easy to detect. Furthermore, changing lines that learning-based repair techniques
have been trained to look into and repair [66], such as conditional statements, results in bugs that
can be easily repaired, even if they involve multiple lines.

Proposed Solution.To advance automated bug generation concerning the evaluation of learning-
based bug-related tasks, we propose BugFarm. For a given arbitrary code, BugFarm prompts a Large
Language Model (LLM) to mutate multiple statements. Given that LLMs are potentially creative in
generative tasks, leveraging them helps avoid overfitting to a limited number of mutation operators
and bug patterns. To ensure that changing too many locations does not drastically change the
code representation of the mutant, BugFarm analyzes the attention of the underlying model and
instructs LLMs to only change those the model attends least to. As a result, the generated code has
a similar representation to the original one but differs within multiple locations. This makes them
hard to detect by bug prediction approaches and hard to repair by debugging techniques. BugFarm
is programming language-agnostic, i.e., making it a pragmatic approach to generate bugs for any
programming language. Like related mutant generation techniques, BugFarm creates unconfirmed
bugs, which should be validated through test execution. Our notable contributions are:

• A new perspective into bug generation:We propose a novel technique for bug generation
concerning the evaluation of the learning-based bug-related tasks. Our proposed technique,
BugFarm, relies on the model’s attention to different parts of code to identify where to inject bugs
so that the impact of changes on code representation is minimal. It leverages such information
to craft contextual prompts for LLMs to mutate any arbitrary code. The implementation and
artifact of BugFarm, including all the generated bugs, are publicly available [5].
• Empirical evaluation:We extensively evaluated BugFarm and two most recent learning-based
bug generation approaches, LEAM [59] and 𝜇BERT [36]. Our evaluation of 320𝑘+ bugs (from
over 2.5𝑀 mutants) generated for 15 Java projects answers research questions related to (1) the
properties of generated bugs, (2) the ability of learning-based bug prediction models to detect
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public static <E> TransformedSortedBag<E> transformedSortedBag(
final SortedBag<E> bag,
final Transformer<? super E, ? extends E> transformer) {

final TransformedSortedBag<E> dec =

new TransformedSortedBag<>(bag, transformer);
if (!bag.isEmpty()) {

@SuppressWarnings("unchecked")
final E[] values = (E[]) bag.toArray();
bag.clear();
for (final E value : values) {

dec.decorated().add(transformer.transform(value));
}

}
return dec;

}

(a) Original Method

public static <E> TransformedSortedBag<E> transformedSortedBag(
final SortedBag<E> bag,
final Transformer<? super E, ? extends E> transformer) {

final TransformedSortedBag<E> dec =
new TransformedSortedBag<>(bag, transformer);

if ((bag == null)) {
@SuppressWarnings("unchecked")
final E[] values = (E[]) bag.toArray();
bag.clear();
for (final E value : values) {

dec.decorated().add(transformer.transform(value));
}

}
return dec;

}

(b) Bug generated by LEAM [59]

public static <E> TransformedSortedBag<E> transformedSortedBag(
final SortedBag<E> bag,
final Transformer<? super E, ? extends E> transformer) {

final TransformedSortedBag<E> dec =
new TransformedSortedBag<>(bag, transformer);

if (!!bag.isEmpty()) {
@SuppressWarnings("unchecked")
final E[] values = (E[]) bag.toArray();
bag.clear();
for (final E value : values) {

dec.decorated().add(transformer.transform(value));
}

}
return dec;

}

(c) Bug generated by 𝜇BERT [36]

public static <E> TransformedSortedBag<E> transformedSortedBag(
final SortedBag<E> bag,
final Transformer<? super E, ? extends E> transformer) {

final TransformedSortedBag<E> dec =

null;
if (!bag.isEmpty()) {

@SuppressWarnings("unchecked")
final E[] values = (E[]) bag.toArray();
bag.clear();
for (final E value : values) {

dec.decorated().add(transformer.transform(value));
}

}
return null;

}

(d) Bug generated by BugFarm

Fig. 1. An illustrative example showing the bugs generated for the original code (a) using LEAM (b), 𝜇BERT

(c), and BugFarm (d).

them, (3) the effectiveness of a learning-based program repair technique to repair them, (4) the
impact of prompt crafting, and (5) the performance characteristics of techniques. The results
confirm that BugFarm bugs are hard-to-detect (up to 41% higher False Negative Rate and 11%,
6%, 29%, and 21% lower Accuracy, Precision, Recall, and F1 score) and hard-to-repair (22% repair
success rate compared to 34% and 49% of LEAM and 𝜇BERT bugs). Also, generating effective
bugs is more efficient using BugFarm.

2 ILLUSTRATIVE EXAMPLE

To illustrate the limitations of prior work and present the key idea behind BugFarm, we will
use the code snippets in Figure 1. The original code in Figure 1a takes bag and transformer objects
as inputs. If bag is not empty, it moves all the objects inside it to transformer. There are several
ways to inject bugs into this code snippet by adding, deleting, or modifying the 13 statements in its
body (some statements are split into two lines for better presentation). These bugs are intended
to challenge bug prediction and program repair models we used in our evaluation (§5), which are
fine-tuned on top of CodeT5 [64]. Concerning the attention of the underlying model to the original
code, the two least attended statements (details in algorithm 1) are highlighted in green.
We leverage three bug generation tools, namely, BugFarm, LEAM [59], and 𝜇BERT [36] to

transform the original code snippets into bugs (bugs were confirmed through test execution). LEAM
is a technique that represents code as a sequence of AST nodes and learns to apply grammar rules
to select and modify the code for bug generation. 𝜇BERT selects code tokens corresponding to AST
nodes, replaces them with a special token <mask>, and asks CodeBERT to replace them with new
tokens for bug generation. BugFarm identifies the least attended statements and prompts an LLM
to perform bug-inducing transformations only on those lines. Figures 1b and 1c show one of the
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Fig. 2. Overview of BugFarm

generated bugs by LEAM and 𝜇BERT (LEAM and 𝜇BERT generate 19 and 68 mutants in total, out
of which only 6 and 1 are confirmed bugs). BugFarm generates a bug shown in Figure 1d. The lines
changed to introduce a bug are highlighted in red.

BugFarm bug is notable from various perspectives. First, it involves multiple statements (hard to
localize and repair). Second, both modified statements are among the least attended statements,
making it hard for the model to distinguish the bug from the original code (hard to detect). LEAM
and 𝜇BERT bugs modify only one line that is not among the least attended statements. As a result,
when running against our studied bug prediction model (§5.3) and program repair model (§5.4),
they were easily detected and repaired. In contrast, the same models failed to detect and repair
BugFarm bug.

3 APPROACH OVERVIEW

Figure 2 provides an overview of BugFarm framework consisting of three major components: (1)
Method Extractor, (2) Attention Analyzer, and (3) Bug Generator. BugFarm takes a project and a
pre-trained code-language model as inputs and extracts the methods through a lightweight static
analysis. For each method, it then identifies the bug location candidates by analyzing the model’s
attention to individual code tokens. To generate bugs for each method, BugFarm crafts a prompt to
an LLM, including the code to be transformed into bugs and additional contexts reflecting candidate
locations for bug injection. From the generated bugs, BugFarm selects those that are syntactically
correct, where the bug-inducing changes do not significantly change the attention of the model.

The Method Extractor component takes the input project and builds its corresponding parse tree
to extract all the methods in the source files. These methods will be passed as an input to Attention
Analyzer to identify the candidate locations for bug injection (more details in §4.1).
Recent state-of-the-art learning-based software engineering models are all transformer-based

due to the naturalness of code [28] and the promising results of such models in natural language
processing (NLP) [62]. Transformer-based models rely on attention for neural code representation.
So, to identify the candidate locations to inject unnoticeable bugs into a given method, Attention
Analyzer extracts the corresponding attention of the model to code tokens and identifies those
with the lower contribution in the code representation, i.e., those with less attention weight values.
Bug locations in BugFarm are at the statement level; thereby, BugFarm ranks the input method’s
statements based on the #𝑇𝐿𝐴/#𝑇 values and chooses the ones with the lowest value. Here, 𝑇𝐿𝐴 is
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the number of least attended tokens, and 𝑇 denotes the total number of tokens in the statement
(more details in §4.2).

Finally, Bug Generator component takes the list of bug location candidates as input and creates a
prompt consisting of natural language instruction, bug location candidates, and the method. It then
sends the prompt to an LLM and collects the generated bugs in the response. For the generated bugs
by LLM, BugFarm computes the extent to which the bug-inducing changes impact the model’s
attention to the buggy method compared to the input method, and selects those with negligible
impact on the attention. It also discards the bugs that are syntactically incorrect for the sake of
quality (more details in §4.3).

4 BUGFARM

In this section, we will explain the details of three main components of BugFarm. Specifically, we
will first discuss how BugFarm parses the subjects and extract methods as inputs for the Attention
Analyzer component. Next, we will provide a background on the attention analysis required to
understand the subsequent components. Finally, we answer two main questions, namely (1) How
does BugFarm decide where to inject bugs?, and (2) how BugFarm generates a set of bugs?
4.1 Method Extractor

Our approach sets itself apart from most prior work, which relies on defect datasets for automated
bug generation [46, 50, 59]. Instead, it focuses on injecting diverse and complex bugs into any well-
maintained project using LLMs, regardless of the programming language. As a result, we assume
that the input to the BugFarm is a project rather than a single method. As a first step, BugFarm first
requires extracting the implemented methods in each input project. To that end, Method Extractor
component leverages a language-specific parser depending on the programming language used
in the input project, builds program parse trees, and extracts a list of methods and constructors.
Next, it collects both signatures and body (excluding docstrings) using MethodDeclaration and
ConstructorDeclaration blocks in the parse tree. Each method will be passed to the Attention
Analyzer component, which we will describe next.
4.2 Attention Analyzer

State-of-the-art code-language models are based on the Transformer architecture [62]—an encoder
to capture input’s contextual representations and a decoder to generate output tokens. To produce
contextualized vector representation of a sequence of tokens, Transformers rely on Multi-Head
Self-Attention. More specifically, for a method that consists of 𝑛 tokens

−−→
𝑇𝑘𝑛 = {𝑚0, . . . ,𝑚𝑛−1}, a

Transformer model with L layers takes
−−→
𝑇𝑘𝑛 as input and produces Hℓ = [hℓ

0, ...,h
ℓ
𝑛−1]. Here, Hℓ

corresponds to the hidden vector representations in layer ℓ ∈ {1, 2, ...,L}. In each Transformer layer
ℓ , multiple self-attention heads are used to aggregate the outputs of the previous layer. Consequently,
for each token𝑚𝑖 in the method, the self-attention assigns a set of attention weights with respect
to all other tokens in the input sequence, i.e., 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑚𝑖 ) = {𝛼𝑖0, . . . , 𝛼𝑖𝑛−1}, where 𝛼𝑖 𝑗 indicates
the relative attention of𝑚𝑖 to𝑚 𝑗 .
The hidden representation weights of Transformers will be computed based on the attention

weights, making the attention weights crucial to identify the importance of each token in the final
representation of the method. Recent research has shown that attention analysis can be utilized to
interpret the knowledge learned during training [27, 30, 63]. Following their insights, BugFarm
leverages self-attention weight analysis to scrutinize the input method and identify tokens (and
subsequently, statements) with the lowest attention weights. These statements are where BugFarm
can change during bug-inducing transformation without impacting the overall representation of
the method. Algorithm 1 explains our approach for attention analysis, which takes the method
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to be transformed into a bug, threshold value 𝑘 , and a transformer-based model as inputs and
pinpoints the 𝑘% of the least attended statements 𝐿𝐴𝑆 as outputs. To that end, it first extracts the
list of least attended tokens in the method 𝐿𝐴𝑇 (Lines 1-10) and uses them to pinpoint the least
attended statements 𝐿𝐴𝑆 (Lines 11-20).
The algorithm first identifies the tokens

−−→
𝑇𝑘𝑛 and statements −−→𝑆𝑚𝑡 in the given method and

initializes the 𝐿𝐴𝑇 and 𝐿𝐴𝑆 variables to be empty (Lines 1-3). Next, it queries the model 𝑀 to
extract the self-attention values (Line 4). For a model𝑀 with 𝐿 layers and 𝐻 attention heads per
layer, the attention values will be averaged across heads and layers, resulting in an 𝑛 × 𝑛 matrix,
where 𝑛 is the number of tokens. For each token𝑚𝑖 in the𝑚𝑒𝑡ℎ𝑜𝑑 , the algorithm further averages
the attention weight relative to other tokens (averaging the values per column in the self-attention
matrix) to compute a single attention weight value for each token𝑚𝑖 in the method (Line 5). Given
that we are interested in the least attended tokens in the code, Algorithm 1 sorts the attention
weight vector,

−−−−−−−−−→
𝑇𝑘𝑛𝐴𝑡𝑡𝑛𝑊 , populates their corresponding indices in

−−−−−−−−−−−−→
𝑆𝑜𝑟𝑡𝑒𝑑𝑇𝑘𝑛𝐼𝑛𝑑 (Line 6), and

identifies the top 𝑘% of least attended tokens, 𝐿𝐴𝑇 (Lines 7-10).
With the least attended tokens extracted, the algorithm can identify the least attended statements,

𝐿𝐴𝑆 . To that end, it weighs each statement by a score (Lines 11-14), which is the ratio of the number
of least attended tokens in that statement, normalized by its length. The key idea here is that a
statement with the highest amount of overlap between least attended tokens should achieve a
lower score, thus, be considered the least attended statement. Without normalizing the statement
length, longer statements will be penalized, and BugFarm never selects them as a bug injection
location. Finally, the statements are sorted in ascending order based on their scores, and the least
𝑘% attended statements (we take the ceiling in case 𝑘% of total statements is less than one) will be
returned as 𝐿𝐴𝑆 (Lines 15-20).

Algorithm 1: Attention Analyzer
Inputs: Method𝑚𝑒𝑡ℎ𝑜𝑑 , Threshold 𝑘 , Transformer-based model𝑀
Output: Least attended statements 𝐿𝐴𝑆

1

−−→
𝑇𝑘𝑛 ← getTokens (method ) ;

2

−−→
𝑆𝑚𝑡 ← getStatements (method ) ;

3 LAT , LAS ← ∅;
4 𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡𝑛𝑊 ← getSelfAttnW (M,

−−→
𝑇𝑘𝑛) ;

5

−−−−−−−−→
𝑇𝑘𝑛𝐴𝑡𝑡𝑛𝑊 ← getTknAttnW (SelfAttnW ) ;

6

−−−−−−−−−−−→
𝑆𝑜𝑟𝑡𝑒𝑑𝑇𝑘𝑛𝐼𝑛𝑑 ← getSortedTknIndices (TknAttnW ) ;

7 i← 0;
8 while 𝑖 < ⌈ (k/100) ∗ SortedTknInd .length⌉ do
9 LAT ← LAT ∪𝑇𝑘𝑛[𝑆𝑜𝑟𝑡𝑒𝑑𝑇𝑘𝑛𝐼𝑛𝑑 [𝑖 ] ];

10 i← 𝑖 + 1;
11 SmtScore← ∅;
12 foreach 𝑠𝑖 ∈ 𝑆𝑚𝑡 do

13 score← |si ∩ LAT |/si .length;
14 SmtScore← SmtScore ∪ ⟨𝑠𝑖 , 𝑠𝑐𝑜𝑟𝑒 ⟩;
15 𝑆𝑜𝑟𝑡𝑒𝑑𝑆𝑚𝑡𝐼𝑛𝑑 ← getSortedSmtIndices (SmtScore) ;
16 i← 0;
17 while 𝑖 < ⌈ (k/100) ∗ SortedSmtInd .length⌉ do
18 LAS ← LAS ∪ 𝑆𝑚𝑡 [𝑆𝑜𝑟𝑡𝑒𝑑𝑆𝑚𝑡𝐼𝑛𝑑 [𝑖 ] ];
19 i← 𝑖 + 1;
20 return 𝐿𝐴𝑆
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4.3 Bug Generator

Bug generation involves modifying, adding, or deleting code segments from an original method
to change the expected behavior of the program. The Bug Generator module of BugFarm takes
a method and its corresponding set of 𝐿𝐴𝑆 identified in the previous step as inputs, and crafts
LLM prompts to generate 𝑁 buggy versions for the method as outputs. Our intuition for making
BugFarm configurable is that our bugs, very likely, will be used as training/fine-tuning data for
bug-related tasks. So, generating multiple buggy versions of a single method would be helpful
for a model to distinguish between buggy and non-buggy code easier. The total number of bugs,
however, also depends on the size of the method and threshold value 𝑘 . For example, 𝑘 = 10% for
methods with less than 10 statements returns one statement as LAS, and changing that statement
in 𝑁 unique ways may be infeasible.
BugFarm’s prompts consist of three parts. The first part is the natural language instruction

asking LLM to generate the bugs. The second part provides contextual information about where to
inject the bug, i.e., only to consider the least attended statements, 𝐿𝐴𝑆 , for making bug-inducing
changes. Finally, we include the entire method, including both signature and the method body, in
the prompt. Such prompts are LLM-agnostic, i.e., they can be used with various existing LLMs,
such as LLaMa [43], PaLM [26], Copilot [24], Alpaca [58], and ChatGPT [3]. The only consideration
is to check if the size of the prompt matches the context window of the LLM.

Algorithm 2: Bug Generator
Inputs: Method𝑚𝑒𝑡ℎ𝑜𝑑 , Least attended statements 𝐿𝐴𝑆 , Number of bugs 𝑁 , Transformer-based model𝑀
Output: Buggy methods 𝐵𝑢𝑔𝑠

1 Bugs← ∅;
2 LASInd ← getLASIndices (method, LAS) ;
3 method ← addIndices (method ) ;
4 Prompt ← "Inject $𝑁 bugs in the following method by changing only the statements at locations $𝐿𝐴𝑆𝐼𝑛𝑑 :

$𝑚𝑒𝑡ℎ𝑜𝑑";
5 Responses← queryLLM (Prompt ) ;
6 foreach 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ∈ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 do
7 if !𝑖𝑠𝑃𝑎𝑟𝑠𝑒𝑎𝑏𝑙𝑒 (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ) then
8 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;

9 𝑛𝑒𝑤𝐿𝐴𝑆 ← getLAS (Response,M ) ;
10 𝑐ℎ𝑒𝑐𝑘 ← 𝑡𝑟𝑢𝑒 ;
11 foreach 𝑠𝑡𝑚𝑡 ∈ 𝑔𝑒𝑡𝐷𝑖 𝑓 𝑓 (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒,𝑚𝑒𝑡ℎ𝑜𝑑 ) do
12 if 𝑠𝑡𝑚𝑡 ∉ 𝑛𝑒𝑤𝐿𝐴𝑆 then

13 𝑐ℎ𝑒𝑐𝑘 ← 𝑓 𝑎𝑙𝑠𝑒 ;
14 𝑏𝑟𝑒𝑎𝑘 ;

15 if 𝑐ℎ𝑒𝑐𝑘 then

16 𝐵𝑢𝑔𝑠 ← Bugs ∪ Response;

After the LLM’s response to the prompts, Bug Generator component validates (1) if they are
syntactically correct and (2) if the changes do not impact the attention of the model. The responses
that do not pass these two checks will be discarded. Ideally, we want the produced bugs to be
syntactically correct. To that end, our prompts also include instructions to produce syntactically
correct code. However, our experiments showed that despite asking an LLM to produce syntac-
tically correct code, specifically for longer methods, it generates responses that are not parsable.
Furthermore, our goal is to generate bugs that have a very close neural representation with the
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original code. So, we assess the model’s attention to the generated bugs and only accept them if the
changes are still among the least attended statements.
Algorithm 2 demonstrates BugFarm’s bug generation and validation approach. It starts by

initializing the output variable 𝐵𝑢𝑔𝑠 (Line 1) and getting the indices of LASs in𝑚𝑒𝑡ℎ𝑜𝑑 (Line 2).
Next, it adds an index to each statement in𝑚𝑒𝑡ℎ𝑜𝑑 (Line 3). This will help us to refer to LASs in
the prompt by number instead of including the whole statements, resulting in a reduction of the
prompt size. This is specifically important for longer methods or statements, as the context window
of LLMs is limited [45, 67]. Next, we will craft the prompt with the required context, i.e., indexed
method and bug injection location, and send the prompt to an LLM (Lines 4-5) 2. Finally, once
the LLM responds, we check if the generated bugs are syntactically correct (Lines 7-8) and if the
changed statements are among the least attended statements by the model (Lines 9-14) to add them
to the acceptable set of bugs (Lines 15-16).

5 EVALUATION

To evaluate the effectiveness of BugFarm, we compare it with two state-of-the-art automated bug
generation approaches, namely LEAM and 𝜇BERT, investigating the following research questions:

RQ1: Characteristics of the Generated Bugs. Can BugFarm successfully inject bugs into any
arbitrary code? What are the characteristics of the generated bugs by each approach? To
what extent do our bugs overlap with those generated by other approaches?

RQ2: Effectiveness in Generating Hard-to-Detect Bugs. How well do learning-based bug
prediction models perform at detecting BugFarm bugs compared to other techniques?

RQ3: Effectiveness in Generating Hard-to-Repair Bugs. To what extent can a learning-
based Automated Program Repair (APR) technique repairs BugFarm bugs compared to that
generated by alternative approaches?

RQ4: Necessity of Prompt Engineering. What are the benefits of prompt engineering in
BugFarm?

RQ5: Performance. How long does it take to generate and validate bugs using BugFarm and
other approaches?

5.1 Experimental Setup and Data Availability

Alternative Approaches.We compare BugFarm with two most recent mutant generation tech-
niques, 𝜇BERT [36] and LEAM [59]. To inject mutants, 𝜇BERT selects AST nodes representative of
program behavior—literals, identifiers, expressions, assignments, object fields, method calls, array
access, and types. Then, it replaces the tokens in selected AST nodes with the spacial token <mask>
and uses CodeBERT to predict the masked token. The intuition is that if CodeBERT predicts a token
different from the original one, the transformation introduces a bug. LEAM is a deep learning-based
technique that learns to mutate code from large examples of real-world bugs. To that end, they
represent code as a sequence of AST nodes and learn to apply eight grammar rules to select and
modify the code. Both 𝜇BERT and LEAM claim to generate better bugs (mutants confirmed by test
execution) compared to classic approaches, namely PIT [16] and Major [33]. Therefore, we did not
include classic techniques in our evaluation.

For BugFarm, we used the threshold value 𝑘 = 10%, mainly because alternative approaches do not
change more than a handful of statements in a given code (more details in §5.2). Our experimental
results in the rest of this section confirm that even with such a low threshold, we still surpass
other techniques. We expect a higher threshold will make our bugs more complex compared to
2The natural language part of our prompts is more complex than the example here. The readers can refer to our artifact to
see the exact prompts [5]
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other approaches, improving margins. We also configured BugFarm to generate at most three
mutants per method (𝑁 = 3 in Algorithm 2) due to budget allowance. The current implementation
of BugFarm’s Bug Generator component uses GPT-3.5-turbo as an LLM due to its superiority over
a large number of models [12, 48, 49, 69] and cost-effectiveness. Using a more advanced LLM such
as GPT-4 likely yields better results, not worse.
Bug Validation. Alternative approaches we compare against generate mutant, which may not
necessarily change the outcome of test execution. Worse, the mutants may not even be compilable.
For BugFarm, although we ask the LLM to generate syntactically correct bugs, it is still not
guaranteed that the generated code executes and changes the outcome of test execution. This
entails implementing a validation process to confirm if the generated mutants/bugs are compilable
and can change the outcome of test execution to consider them bugs. Our validation procedure
follows these steps: We first run existing test suites on the original code and select the green tests.
Next, we take all the generated mutants/bugs by different techniques, compile them, and run the
previously green tests against them (each mutant will be tested in isolation). We discard those that
do not compile or result in no failure after test execution. All the experiments answering RQ1-RQ5
are done with confirmed bugs.
Bug Prediction Models. When selecting bug prediction models, we had to consider the following
criteria: (1) the current implementation of BugFarm’s Attention Analyzer component works on
transformer-based models, including customized trained models and those fine-tuned on pre-
trained code-language models; (2) we require the availability of models to perform the attention
analysis, so closed-source models such as Codex [15] are off the table; (3) to compare against
other bug prediction approaches, we require models with either pre-trained models or required
artifacts for training available. We could not find any custom bug prediction model publicly or per
request available with such characteristics. Consequently, we chose three pre-trained code-language
models that are widely used by the research community, namely CodeBERT [22], CodeT5 [64],
and NatGen [14]3. We fine-tuned these models using the real world and synthetic bugs, i.e., those
generated by LEAM and 𝜇BERT, and compared their effectiveness in predicting our bugs.
CodeBERT is an encoder-only transformer model based on BERT [20] architecture, which is

trained on 2.1𝑀 bi-modal (natural language and code pairs) and 6.4𝑀 uni-modal (code only)
data from CodeSearchNet [29] dataset. The main learning objectives in CodeBERT are Masked
Language Modeling (MLM)—the model learns to predict the tokens replaced by a special mask
token—and Replaced Token Detection (RTD)—the model learns to detect which token does not
belong to the original data. CodeT5 is an encoder-decoder transformer model based on T5 [51]
architecture. CodeT5 is trained on 8.35𝑀 functions from various programming languages provided
by CodeSearchNet [29] and BigQuery [1] dataset, and its training objectives include masked span
and masked identifier prediction. Such objectives enable the model to understand code semantics
better than CodeBERT.

NatGen is also an encoder-decoder transformer model, trained on a generative task of naturaliz-
ing source code. Specifically, NatGen starts with CodeT5—based model—parameters and continues
the training with a new objective, i.e., re-constructing the original code (natural) given transformed
code (de-natural). It uses 8.1𝑀 pairs of natural and de-natural functions from CodeSearchNet [29]
and C/C#. We used the base model of CodeBERT, CodeT5, and NatGen for our experiments.
Automated ProgramRepair Model. To evaluate the effectiveness of learning-based techniques in
repairing generated bugs, we used FitRepair [66]. FitRepair is a state-of-the-art APR technique that
3Fine-tuning larger models requires non-trivial computing resources. Our experiments will show that models superior in
other code-related tasks (e.g., CodeT5 over CodeBERT) show the significance of BugFarm better. We expect this to hold for
larger models as well.
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Table 1. Comparing the characteristics of bugs generated by BugFarm, 𝜇BERT, and LEAM.M: # Methods,

UB: # Unconfirmed Bugs, CB: # Confirmed Bugs, SI: # Statements Involved in bug generation, LD: Lines

Deleted in bug generation, ED: Edit Distance, OL: Overlap with LEAM, OM: Overlap with 𝜇BERT.

Subjects M

BugFarm LEAM [59] 𝜇BERT [36]

UB CB SI LD ED OL OM UB CB SI LD ED UB CB SI LD ED

cli 276 438 263 (60%) 2.86 0% 32.14 <14%,0.64> <8%,0.67> 3959 1375 (34.73%) 2.56 13.82% 26.2 12641 1528 (12%) 2.00 0.07% 19.38
codec 901 1586 357 (23%) 3.12 0% 32.39 <3%,0.67> <4%,0.85> 13603 2114 (16%) 2.59 7.95% 20.33 42529 9541 (22%) 2.01 0% 17.89
collections 4440 7373 2958 (40%) 2.55 0% 27.01 <7%,0.67> <5%,0.73> 56196 9356 (17%) 2.71 8.87% 21.33 132009 21367 (16%) 2.01 0% 20.02
compress 4123 6544 464 (7%) 3.04 0% 30.29 <5%,0.69> <2%,0.80> 61488 9085 (15%) 2.57 12.87% 24.56 167259 22657 (14%) 1.97 0% 23.83
csv 248 379 250 (66%) 2.66 0% 24.30 <12%,0.66> <1%,0.75> 3560 1181 (33%) 2.83 14.65% 33.60 818 106 (13%) 1.98 0% 6.81
jxpath 1672 2601 912 (35%) 3.11 0% 26.09 <6%,0.69> <5%,0.78> 26615 5645 (21%) 2.86 16.44% 26.81 90153 10678 (12%) 2.00 0% 25.88
lang 3810 6505 3734 (57%) 2.95 0% 29.76 <7%,0.68> <3%,0.76> 54101 15861 (29%) 2.66 10.01% 21.60 80200 15618 (19%) 2.00 0.02% 21.13
math 5796 8935 6104 (68%) 3.27 0% 33.12 <4%,0.67> <2%,0.77> 92243 40299 (44%) 2.70 8.56% 17.15 359023 83206 (23%) 2.01 0.01% 18.30
gson 985 1497 537 (36%) 3.19 0% 36.43 <8%,0.7> <2%,0.68> 14496 2957 (20%) 2.60 18.16% 27.89 25359 2067 (8%) 2.00 0.05% 19.84
jackson-core 2626 4494 1707 (38%) 3.85 0% 41.85 <3%,0.68> <2%,0.72> 44364 9697 (22%) 2.43 22.74% 25.74 62963 9296 (15%) 2.09 0% 21.58
jackson-db 8076 12812 3855 (30%) 3.76 0% 41.70 <6%,0.66> <5%,0.74> 115859 17789 (15%) 2.78 12.61% 28.96 254947 22300 (9%) 2.01 0% 22.38
jackson-xml 586 877 249 (28%) 3.80 0% 44.24 <6%,0.68> <5%,0.71> 9935 1541 (16%) 2.67 13.17% 31.46 16420 1225 (7%) 1.98 0.08% 14.64
jfreechart 8602 13679 3035 (22%) 2.88 0% 25.26 <5%,0.71> <0.6%,0.81> 164460 16716 (10%) 2.44 11.23% 19.64 111341 7026 (6%) 2.01 0.07% 28.20
joda-time 4279 7833 3574 (46%) 2.38 0% 20.61 <6%,0.66> <2%,0.74> 69548 13739 (20%) 2.87 7.01% 24.73 141682 28010 (20%) 2.00 0% 21.21
jsoup 1642 2694 1335 (50%) 2.79 0% 28.47 <9%,0.66> <4.5%,0.7> 22632 5311 (23%) 2.52 14.54% 23.54 30420 4002 (13%) 2.24 0.05% 21.07
Total 48062 78247 29334 (37%) - - - - - 753059 152666 (20%) - - - 1527764 238627 (16%) - - -

Average 3204 5216 1956 (-) 3.08 0% 31.58 <7%,0.67> <3.49%,0.75> 50204 10178 (-) 2.65 13% 24.90 101851 15908 (-) 2.00 0.02% 20.14

outperforms existing approaches. It leverages information retrieval and static analysis to implement
domain-specific fine-tuning and prompting strategies. We used FitRepair with CodeT5-Large in a
zero-shot manner to generate patches for 𝜇BERT, LEAM, and BugFarm bugs and validated if the
patches thoroughly fix the bugs through test execution.
Subjects. BugFarm is programming-language agnostic; none of its components depend on a specific
programming language. However, we chose Java projects in our experiments for the following
reasons: (1) LEAM’s pre-trained model is on Java, and they have no alternative training dataset for
other programming languages; (2) we needed real-world bug datasets for RQ2, and most of the
existing real-world bug datasets are in Java. For a fair comparison, we used Defects4J 𝑉 2.0 projects
as a baseline for bug generation since the alternative approaches are shown to work on them with
no issues. The current version of BugFarm supports Maven projects only, so we excluded Mockito
and Closure projects from the subjects. The first two columns of Table 1 show the list of our 15
subjects and the number of methods per subject used for bug generation.
Evaluation Metrics. To compare the performance of bug prediction models, we use accuracy,
precision, recall, F1 score, False Positive Rate (FPR), and False Negative Rate (FNR) as our metrics. To
evaluate the APR results, we measure the repair success rate, i.e., the number of bugs the technique
successfully patches. We define TP, TN, FP, and FN as below:
• True Positive (TP). The code is buggy; the model predicts it as buggy.
• True Negative (TN). The code is not buggy; the model predicts it as non-buggy.
• False Positive (FP). The code is not buggy; the model predicts it as buggy.
• False Negative (FN). The code is buggy; the model predicts it as non-buggy.

Data Availability. The implementation of BugFarm and all the artifacts required for reproducing
the results presented in this paper are publicly available [5].

5.2 RQ1:Quality of the Generated Bugs

To answer this research question, we compared the characteristics of the bugs generated by
BugFarm with alternative approaches using the metrics listed below. The metrics are computed for
all the methods and averaged for each project. For BugFarm, we have also averaged the numbers
across all the models (CodeBERT, CodeT5, and NatGen)4.

4BugFarm data per base model is publicly available in the artifact website.
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• # Unconfirmed bugs: This metric, computed under columns UB in Table 1, shows the total
number of unconfirmed bugs/mutants generated for each project. All the approaches suc-
cessfully generate mutants/bugs for all the methods in the subject projects. 𝜇BERT

generates 1.5 and 8 times more bugs compared to LEAM and BugFarm, respectively.

• # Confirmed bugs: This metric, shown under columns CB in Table 1, measures the number of
confirmed bugs per each project generated by different approaches. The numbers inside the
parenthesis indicate the percentages of confirmed bugs compared to unconfirmed bugs. A
higher percentage implicitly implies the superiority of the technique in bug generation, i.e.,
the code transformations are more likely to be bugs. From these results, we see that 37% of

the generated bugs by BugFarm are real bugs, compared to 20% and 16% for LEAM

and 𝜇BERT, respectively. Except for one project (Commons Compress), the #CB/#UB ratio
for BugFarm is higher, with a significant margin. The rest of the metrics are computed for
confirmed bugs, which we refer to as bugs for simplicity.
• # Statements involved in bug generation: This metric indicates the number of statements added,
removed, or modified to generate the bugs. On average, even with the threshold values of
𝑘 = 10%, BugFarm changes more statements to generate bugs compared to LEAM

and 𝜇BERT. Although #SI is higher for BugFarm bugs, given that these statements are
among the least attended statements, we will later see that the models will have a harder time
distinguishing them from the correct code (more details in §5.3).
• # Lines deleted: Deleting an entire statement, while likely to create a bug, may not be the
best bug-inducing transformation, as it will change attention significantly and result in a
runtime exception rather than a semantic bug. So, we also wanted to compare the generated
bugs from this aspect. Columns LD in Table 1 show the percentage of bugs created with
only lines deleted (or commented) during bug generation. BugFarm does not delete (or

comment) any statement through bug-inducing transformation (0% on average for

all the projects), compared to LEAM (13%) and 𝜇BERT (0.02%).
• Edit distance: We also wanted to compare the edit distance between the original and buggy ver-

sions generated by each technique. We used Levenshtein [37] edit distance, which measures the
minimum number of single-character edits—insertions, deletions, or substitutions—required to
change one string into another. Each code is represented as a string of characters to compute
the Levenshtein edit distance. The results for edit distance normalized by #CB are available
under columns ED in Table 1. Compared to LEAM and 𝜇BERT, BugFarm’s bugs have

higher ED values. This again indicates that BugFarm’s changes to the code are bigger

yet less noticeable, as we will show in RQ2 and RQ3. Between 𝜇BERT and LEAM, the
latter generates bugs different from the original code in more places.
• Uniqueness: Finally, we were interested to see howmuch our bugs overlap with those generated
by 𝜇BERT and LEAM. To that end, we measured the Exact Match (EM) and CodeBLEU [52]
values between each BugFarm bug with all the corresponding bugs generated by 𝜇BERT
and LEAM. For example, for a given method A, if BugFarm generates three bugs 𝑏1, 𝑏2, 𝑏3
and LEAM generates four 𝑙1, 𝑙2, 𝑙3, 𝑙4, we construct 12 pairs of ⟨𝑏𝑖 , 𝑙 𝑗 ⟩ to compute the EM and
CodeBLEU. EM is a strict all-or-nothing metric; being off by a single character results in
a score of 0. If the characters of 𝑏𝑖 exactly match the characters of 𝑏 𝑗 , EM = 1 for the pair;
otherwise, EM = 0. CodeBLEU is a metric to measure weighted n-gram match between the
pairs by considering not just the code tokens but also code syntax via abstract syntax trees
(AST) and code semantics via data flow.
The EM and CodeBLUE values are shown under columns OL (overlap with LEAM) and OM
(overlap with 𝜇BERT) in Table 1. The first number indicates EM, and the second one is
CodeBLEU. These numbers show that only 7% and 3.49% of the total bugs generated by
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BugFarm for all the projects overlap with LEAM and 𝜇BERT, respectively, confirming
the uniqueness of BugFarm bugs. The average CodeBLEU values are also 0.67 and 0.75. The
high number for CodeBLEU is not a threat here, considering bug transformations do not greatly
change the code compared to the original one. In fact, it shows that although BugFarm bugs

are better at challenging learning-based techniques, they are semantically similar to

LEAM and 𝜇BERT bugs; potentially as effective as them in their evaluated tasks [59].

Summary. Compared to other techniques, BugFarm’s bug-inducing transformations involve
more statement modification and change of several code tokens. The overlap between
BugFarm bugs and other approaches is low, demonstrating their uniqueness.

5.3 RQ2: Effectiveness in Generating Hard-to-Detect Bugs

In this research question, we investigate the effectiveness of bug predictionmodels onBugFarm bugs
compared to alternative approaches. Given the unavailability of off-the-shelf models as discussed
in §5.1, we fine-tuned three pre-trained code-language models (CodeBERT, CodeT5, and NatGen)
using real-world and synthetic bugs. We adapted best practices for fine-tuning transformer models
and used the same class distribution in fine-tuning, validating, and testing bug prediction models.
All models were fine-tuned for at most 10 epochs with loss-based early-stopping criteria of two
consecutive epochs 5 and selected the model with the least validation error in our experiments. For
more reliable results, we repeated the evaluation 10 times and reported the average values.

Generally, one should run BugFarm on each fine-tuned model to generate bugs accordingly. How-
ever, our investigation showed that fine-tuning does not greatly impact the set of LAS (Algorithm 1
in §4.2). This is consistent with the findings of prior work that shows fine-tuning only changes
the attention of the last few layers, not impacting the overall attention of the model [56]. It also
shows that many of the generated BugFarm bugs in this study are reusable by other researchers.
Consequently, we only generated bugs for the methods per each model whose LAS set was changed
compared to the baseline pre-trained model.

5.3.1 Fine-tuning on synthetic bugs. We fine-tuned the three baseline pre-trained models on LEAM
and 𝜇BERT bugs. This provided us with six fine-tuned bug prediction models, namely, 𝜇BERT-
CodeBERT, 𝜇BERT-CodeT5, 𝜇BERT-NatGen, LEAM-CodeBERT, LEAM-CodeT5, and LEAM-
NatGen. Our goal is not only to evaluate these models in predicting BugFarm bugs, but also
to see the extent to which BugFarm bugs are harder to be detected than other techniques. To
that end, we evaluated the fine-tuned bug prediction models on BugFarm and the other approach,
whose bugs were not used for fine-tuning. For example, we evaluated 𝜇BERT-CodeBERT on bugs
generated by BugFarm and LEAM. To ensure a fair comparison, we considered methods per each
project that both comparing techniques had generated confirmed bugs for them. This will result
in the same FPR values for both techniques, but allows us to focus on the effectiveness of bugs
for evaluating the model better. This is important from the security perspective since missing a
bug/vulnerability is more severe than marking a correct code as buggy [4].

The rows 1–12 in Table 2 show the result of this experiment. For Accuracy, Precision, Recall, and
F1 score, the lower metric value indicates the approach’s superiority (bugs are harder to distinguish
from correct code, hence being detected). For FNR, a higher metric value indicates the bugs are
harder to detect. From these results, we can clearly see that BugFarm bugs always achieve

higher values for FNR (average margin of 23% (min=2.76%,max=40.89%)) and lower values

5this is the default setting for fine-tuning CodeT5. To ensure a fair comparison, we checked that all the models converged
before 10 epochs.
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Table 2. Effectiveness of studied fine-tuned models in predicting synthetic bugs. Each distinct set of rows

show the same pre-trained model that is fine-tuned on the same dataset, but tested on different bug datasets.

Fine-tune-Model-Test Acc Prec Rec F1 FPR FNR

1 𝜇BERT-CodeBERT-BugFarm 71.95 (4.40% ↓) 90.04 (1.17% ↓) 49.35 (11.83% ↓) 63.76 (8.05% ↓) 5.46 (0.00% −) 50.65 (15.04% ↑)
2 𝜇BERT-CodeBERT-LEAM 75.26 91.11 55.97 69.34 5.46 44.03
3 LEAM-CodeBERT-BugFarm 69.42 (10.91% ↓) 94.11 (1.71% ↓) 41.43 (29.09% ↓) 57.53 (20.72% ↓) 2.59 (0.00% −) 58.57 (40.89% ↑)
4 LEAM-CodeBERT-𝜇BERT 77.92 95.75 58.43 72.57 2.59 41.57
5 𝜇BERT-CodeT5-BugFarm 75.53 (0.72% ↓) 87.7 (0.23% ↓) 59.39 (1.80% ↓) 70.82 (1.17% ↓) 8.33 (0.00% −) 40.61 (2.76% ↑)
6 𝜇BERT-CodeT5-LEAM 76.08 87.9 60.48 71.66 8.33 39.52
7 LEAM-CodeT5-BugFarm 71.37 (8.97% ↓) 89.22 (2.42% ↓) 48.6 (22.44% ↓) 62.92 (15.38% ↓) 5.87 (0.00% −) 51.4 (37.65% ↑)
8 LEAM-CodeT5-𝜇BERT 78.4 91.43 62.66 74.36 5.87 37.34
9 𝜇BERT-NatGen-BugFarm 74.4 (1.37% ↓) 85.01 (0.50% ↓) 59.25 (3.34% ↓) 69.83 (2.17% ↓) 10.44 (0.00% −) 40.75 (5.30% ↑)
10 𝜇BERT-NatGen-LEAM 75.43 85.44 61.3 71.38 10.44 38.7
11 LEAM-NatGen-BugFarm 69.45 (9.48% ↓) 88.31 (2.86% ↓) 44.85 (24.48% ↓) 59.49 (17.19% ↓) 5.94 (0.00% −) 55.15 (35.80% ↑)
12 LEAM-NatGen-𝜇BERT 76.72 90.91 59.39 71.84 5.94 40.61
13 REAL-CodeBERT-BugFarm 52.97 (4.07% ↓) 55.15 (5.57% ↓) 31.81 (12.39% ↓) 40.35 (9.89% ↓) 25.87 (0.00% −) 68.19 (7.07% ↑)
14 REAL-CodeBERT-𝜇BERT 55.22 58.4 36.31 44.78 25.87 63.69
15 REAL-CodeBERT-LEAM 57.68 61.44 41.23 49.35 25.87 58.77
16 REAL-CodeT5-BugFarm 48.91 (5.03% ↓) 48.8 (5.37% ↓) 44.23 (10.50% ↓) 46.4 (8.06% ↓) 46.42 (0.00% −) 55.77 (10.26% ↑)
17 REAL-CodeT5-𝜇BERT 51.5 51.57 49.42 50.47 46.42 50.58
18 REAL-CodeT5-LEAM 53.79 53.77 53.99 53.88 46.42 46.01
19 REAL-NatGen-BugFarm 50.72 (0.26% ↓) 50.6 (0.22% ↓) 60.89 (0.44% ↓) 55.27 (0.32% ↓) 59.45 (0.00% −) 39.11 (0.70% ↑)
20 REAL-NatGen-𝜇BERT 50.85 50.71 61.16 55.45 59.45 38.84
21 REAL-NatGen-LEAM 53.82 53.02 67.1 59.23 59.45 32.9

for the other metrics (average margin of Accuracy=5.97%, Precision=1.48%, Recall=15.5%,

and F1-score=10.78%). Furthermore, by looking at the F1 score values, we observe that the models
fine-tuned on LEAM have a harder time detecting BugFarm bugs than those fine-tuned on 𝜇BERT.
We believe this is because 𝜇BERT bugs are more diverse due to changing many tokens of the code
and combining them through beam search, compared to LEAM bugs that try to mimic the bugs in
their dataset, scrapped from the GitHub issue trackers.

5.3.2 Fine-tuning on real-world bugs. To avoid any bias in our conclusion based on synthetic bugs,
we also fine-tuned baseline pre-trained models with real-world bugs from three datasets, namely
Defects4J [34]6, BugSwarm [60], and RegMiner [57]. The real-world evaluation dataset consists
of 723, 3285, and 36412 original and buggy methods from Defects4J, BugSwarm, and RegMiner,
respectively. This resulted in three bug prediction models, i.e., REAL-CodeBERT, REAL-CodeT5,
and REAL-NatGen. We evaluated each model on BugFarm, 𝜇BERT, and LEAM bugs. The rows
13–21 in Table 2 show the results of this experiment, with margins indicating the difference with
respect to second-best synthetic bug dataset. These results show similar trends we observed

with models fine-tuned on synthetic bugs, i.e., BugFarm bugs result in higher FNR (54.35%

on average) and lower Accuracy (50.86% on average), Precision (51.52% on average), Recall

(45.64% on average), and F1 score (47.34% on average) values.

We can also see that models fine-tuned on real-world bugs underperform those fine-tuned on
synthetic bugs across all metrics. A possible justification for this observation is the distribution
shift between real-world bugs (used for fine-tuning) and synthetic bugs (used for testing). The two
root causes for these distribution shifts are (1) the real-world bugs belonging to projects different
than those from which we generated the synthetic bugs; and (2) the nature of real-world bugs is
different from synthetic bugs. Especially for BugFarm and 𝜇BERT, the bug generation objective
does not include any similarity to real-world bugs.

6We could use the bugs from Mockito and Closure projects, which were excluded from our subjects since BugFarm only
supports Maven at this time
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Table 3. Effectiveness of FitRepair in repairing synthetic bugs. SI: Statements involved.

LEAM [59] 𝜇BERT [36] BugFarm-CodeBERT BugFarm-CodeT5 BugFarm-NatGen

Total Bugs (SI=1,SI=2,SI>2) 100 (84,15,1) 100 (92,8,0) 100 (52,26,22) 100 (34,25,41) 100 (50,16,34)
Success Rate 34% 49% 27% 22% 23%

Summary. Bug prediction models, regardless of whether the fine-tuning dataset is from a
synthetic or real-world bug dataset, have a harder time detecting BugFarm bugs than other
synthetic bugs.

5.4 RQ3: Effectiveness in Generating Hard-to-Repair Bugs

To further demonstrate the complexity of our bugs, we evaluate the ability of FitRepair in repairing
BugFarm, 𝜇BERT, and LEAM bugs. The default configuration of FitRepair aims to generate 5000
patches for a single bug and will terminate if this takes more than five hours. Given the size of
our subject bugs and the non-negligible patch validation time, we reduced the maximum number
of patches to 1007 (confirmed by the developers of FitRepair that this does not result in drastic
performance degradation) and evaluated it on 100 bugs sampled from each bug dataset. When
sampling, we controlled for selecting bugs from the same methods for all approaches. To select the
methods, we sorted them based on the descending order of method size—measured by the number
of characters—and picked the top 100. Our rationale is that the potential locations for bug injection
increase when methods are longer. As a result, the likelihood of observing different bugs produced
by each technique is higher (similar to the illustrative example in §2). The collected bugs are from
11 out of 15 subject projects.

The first row in Table 3 shows the distribution of generated bugs based on the number of
statements involved in bug generation (#SI from RQ1). Most subject bugs from LEAM and 𝜇BERT
differ in only one line with the original code, while BugFarm bugs are more diverse concerning
this metric. Each bug dataset took FitRepair two to seven hours to generate 35 patches, on average.
We validated all the generated patches for each bug, and if one of the patches results in a green test
suite, we ignore other patches and consider the bug repaired by FitRepair. The validation process
of 500 bugs took over 50 hours. The second row of Table 3 shows the percentages of bugs that
FitRepair successfully patched.

FitRepair successfully repaired 34% and 49% of the LEAM and 𝜇BERT bugs, respectively.

In contrast, it can only repair 27%, 22%, and 23% of BugFarm bugs generated for each

pre-trained baseline. This is not surprising, as APR techniques are known to perform better in
repairing bugs with SI=1. In fact, 88% of correct patches for 𝜇BERT and LEAM only differ with the
corresponding bug in one line. This value is only 64% for BugFarm, which implies a higher complex-
ity of BugFarm’s one-line bugs compared to alternative approaches. Our deeper investigation of the
nature of bugs shows that LEAM and 𝜇BERT bugs mostly change the conditional/branch statements.
Since repair templates of FitRepair are specifically designed to repair bugs in conditional/branch
statements (logical expression in if statement), it can repair LEAM and 𝜇BERT bugs better. In
contrast, BugFarm is more creative in introducing bug injection due to the power of LLMs

in code synthesis, and it considers locations that the model attends less to for injecting

the bugs. Consequently, it can challenge learning-based APR techniques crafted to repair

known bug patterns. By looking at the other patches that fixed bugs with SI>=2, we observed the
same pattern, i.e., there was at least one statement changing the conditional statements.

7This is the max allowance, and the tool often generates a lower number of patches
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public static <E> TransformedSortedBag<E> transformedSortedBag(
final SortedBag<E> bag,
final Transformer<? super E, ? extends E> transformer) {

final TransformedSortedBag<E> dec =
new TransformedSortedBag<>(bag, transformer);

if (!bag.isEmpty()) {
@SuppressWarnings("unchecked")
final E[] values = (E[]) bag.toArray();
bag.clear();
for (final E value : values) {

dec.decoratedBag().add(transformer.transform(value));
}

}
return dec;

}

(a) Incorrect method call

public static <E> TransformedSortedBag<E> transformedSortedBag(
final SortedBag<E> bag,
final Transformer<? super E, ? extends E> transformer) {

final TransformedSortedBag<E> dec =
new TransformedSortedBag<>(bag, transformer);

if (!bag.isEmpty()) {
@SuppressWarnings("unchecked")
final E[] values = (E[]) bag.toArray();
bag.clear();
for (final Object value : values) {

dec.decorated().add(transformer.transform(value));
}

}
return dec;

}

(b) Incorrect loop variable type

public static <E> TransformedSortedBag<E> transformedSortedBag(
final SortedBag<E> bag,
final Transformer<? super E, ? extends E> transformer) {

final TransformedSortedBag<E> dec =
new TransformedSortedBag<>(bag, transformer);

if (!bag.isEmpty()) {
// Removed the array initialization

bag.clear();
for (final E value : values) {

dec.decorated().add(transformer.transform(value));
}

}
return dec;

}

(c) Removed array initialization

public static <E> TransformedSortedBag<E> transformedSortedBag(
final SortedBag<E> bag,
final Transformer<? super E, ? extends E> transformer) {

final TransformedSortedBag<E> dec =
new TransformedSortedBag<>(bag, transformer);

if (!bag.isEmpty()) {
@SuppressWarnings("unchecked")
final E[] values = (E[]) bag.toArray();
bag.clear();
for (final E value : values) {

// Removed the method call within the loop
}

}
return dec;

}

(d) Removed method call

public static <E> List<E> transformedSortedBag(
final SortedBag<E> bag,
final Transformer<? super E, ? extends E> transformer) {

final TransformedSortedBag<E> dec =
new TransformedSortedBag<>(bag, transformer);

if (!bag.isEmpty()) {
@SuppressWarnings("unchecked")
final E[] values = (E[]) bag.toArray();
bag.clear();
for (final E value : values) {

dec.decorated().add(transformer.transform(value));
}

}
return dec;

}

(e) Incorrect return type

public static <E> TransformedSortedBag<E> transformedSortedBag(
final SortedBag<E> bag,
final Transformer<? super E, ? extends E> transformer) {

final TransformedSortedBag<E> dec =
new TransformedSortedBag<>(bag, transformer);

if (!bag.isEmpty()) {
@SuppressWarnings("unchecked")
final E[] values = (E[]) bag.toArray();
bag.clear();
for (final Object value : values) {

dec.decoratedBag().add(transformer.transform(value));
}

}
return dec;

}

(f) Combination of bug 3a and 3b

Fig. 3. The bugs generated without prompt engineering for the code in Figure 1a.

Summary. When applied to the same method, BugFarm generates bugs that are harder to
repair by learning-based repair techniques compared to alternative approaches. The power of
BugFarm will become more evident when the methods are longer, letting it change multiple
locations in the method to introduce the bug.

5.5 RQ4: Necessity of Prompt Engineering

The quality of prompts significantly impacts the quality of the model’s response [39]; the more
context you provide to the model in the prompt, the better the response it produces. In the context
of our problem, identifying the location of Least Attended Statements (LASs) brings three benefits:
(1) generating bugs with a similar representation compared to the original code (hard to detect
bug), (2) enforcing the model to change multiple lines (hard to repair bug), and (3) reducing the
search space, i.e., the location in which the bug can be injected. This will help the model focus on
the most important part of the code and generate fewer yet more effective bugs.
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Fig. 4. Performance of BugFarm compared to alternative approaches in unconfirmed bug generation

Our previous research questions confirm the ability of prompt engineering to generate complex
bugs. Generating those bugs without prompt engineering will require more time and cost more.
For example, consider prompting an LLM to generate a bug for the code illustrated in Figure 1a,
implementing a logic through 13 lines of code (some lines are split for better presentation). There
are two least attended statements (LASs) in this method, highlighted in green. The probability
that LLM changes one of them is 2

13 = 0.15, i.e., with a probability of 15%, LLM can generate a
hard-to-detect bug. However, to ensure the bug is also hard to repair, LLM should ideally modify
the two highlighted lines. The probability of LLM choosing the two statements highlighted in green
(the LASs) is only 1%, 1

(132 )
= 0.01. The code snippets in Figure 3 show different bugs generated

by prompting GPT-3.5-turbo six times (buggy lines highlighted in red). We used a simple, not
crafted prompt, asking it to generate a compilable bug from the given method.We can see that

the LLM is quite creative in injecting different bugs (statement deletion, changing types,

and incorrect method calls) into the code. But none of the responses change any of the

least attended statements and, hence, have no overlap with the BugFarm bugs.

In general, for a given method with 𝑛 statements, the bug-inducing change can be applied to any
line. BugFarm selects only 𝑘 percent of statements to be changed and instructs LLM to modify
them, reducing the search space greatly. With the threshold value 𝑘 = 20%, we can reduce the
search space by 80%. Without attention analysis, a naive approach for search space reduction would
randomly select 𝑘 percent of the statements. If not among the least attended statements, they can be
easily detected or repaired by learning-based techniques, as shown in previous research questions.

Summary. Prompt crafting help BugFarm in generating hard-to-detect and hard-to-repair
bugs. The chance of generating a similar dataset without prompt engineering is very narrow,
if not impossible, due to the relatively large search space for moderate to long methods.

5.6 RQ5: Performance

To assess the performance characteristics of BugFarm, we measured the time required to extract
attention weights from the models and the time it takes to prompt the LLM (GPT-3.5-turbo). We
also compared the total time for bug generation in BugFarm compared to alternative approaches.
All the experiments were performed on a workstation with NVIDIA GeForce RTX 3090 GPUs
(24GB GDDR6X memory) and 24 3.50GHz Intel 10920X CPUs (128 GB of memory). Figure 4 shows
the results, where the red dashed line indicates the mean value. Looking at Attention Analyzer in
Figure 4, we can see that it takes 68, 69, and 86 milliseconds on average for BugFarm to extract



Automated Bug Generation in the era of Large Language Models

and analyze attention weights from CodeBERT, CodeT5, and NatGen models. Prompting the LLM
for every method also takes about 9 seconds on average (Prompting box chart at the middle). The
prompting time can be affected by multiple factors, including the traffic on the model and prompt
size, i.e., the number of tokens in the prompt.

We also measured the total time each technique takes to generate unconfirmed bugs per method
(End-to-End Unconfirmed Bug Generation in Figure 4). Compared to attention analysis and prompting,
the overhead of other sub-components in BugFarm, such as parsing and bug selection, is negligible.
Therefore, the average time for generating all the BugFarm unconfirmed bugs per each

method is 9.29 seconds (mostly dominated by the prompting time). In comparison, it takes

LEAM and 𝜇BERT 35 and 28 seconds on average to generate unconfirmed bugs per method.
This is because these approaches generate more unconfirmed bugs, as illustrated in Table 1 under
#UB columns. For LEAM, this time does not include the training time of the model, which is 24
hours 8. Also, since 𝜇BERT takes a long time to mutate big classes, we put a timeout of 15minutes on
it to avoid a long generation time. Validation of unconfirmed bugs was also very time-consuming;
we spent around 80, 000 CPU core-hours to validate over 2.5 million mutants from 𝜇BERT, LEAM,
and BugFarm.

Summary. Compared to alternative approaches, BugFarm is an efficient and scalable tech-
nique for generating bugs. More precisely, BugFarm is 74% and 67% faster in end-to-end
unconfirmed bug generation than LEAM and 𝜇BERT, respectively.

5.7 Discussion

Our comprehensive evaluation of BugFarm compared to the twomost recent alternative approaches
confirms the ability of generated bugs to challenge learning-based bug prediction and repair
techniques. We want to emphasize that our objective in this paper is to generate hard to detect and
repair bugs, concerning learning-based techniques. As a result, comparing with real-world bugs is
out of the scope of this paper. We have no claim that BugFarm bugs mimic real-world bugs (because
they do not need to) or that they do not. In fact, BugFarm leverages GPT-3.5-turbo for generating
bugs, which theoretically have seen many real-world bugs in its training data. This can potentially
help BugFarm bugs be similar to real-world bugs compared to 𝜇BERT, which does not concern such
similarity. We have identified all the potential threats to the validity in the design of the evaluation
and have addressed them throughout the evaluation section when it was the most relevant. Our
next step would be investigating the extent to which BugFarm bugs can enhance downstream
applications of synthetic bugs in learning-based techniques, such as test case prioritization and
bug localization.

6 RELATEDWORK

Our research is related to prior work on (1) real-world bug/vulnerability benchmarks, (2) mutation
testing, and (3) learning-based bug/vulnerability generation.
Real-world bug/vulnerability benchmarks. Several attempts have been made to construct
real-world bug datasets manually. Defects4J [34], BugSwarm [60], Bugs.jar [53], and RegMiner [57]
are the commonly used Java bug datasets that have mined GitHub to collect regression bugs
from bug-fixing commits. BigVul [21] and CVEFixes [7] are real-world examples of vulnerabilities
collected from bug-fixing reports in the CVE/NVD database [10]. BugFarm complements the bugs
and vulnerabilities in these datasets with hard-to-repair and hard-to-detect bugs. Also, the bugs

8This number is quoted from the paper.
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in these datasets only represent human mistakes, which could be potentially different from the
mistakes AI programming tools make.
Mutation testing. Mutation testing has been widely used in testing programs written in different
languages [8, 16–19, 33, 41, 44, 47, 55], as well as testing program properties such as specifica-
tions [42], memory usage [65], and energy consumption [31]. Syntactic mutation operators, where
small syntactic changes in the code generate the artificial bugs, are not representative of real
bugs [35]. Constructing defect-based mutation operators alleviates the mentioned limitation but
requires domain knowledge. If done manually, it also can be labor-intensive and time-consuming.
BugFarm is an automated technique for generating bugs; hence, it is superior to non-automated
mutation testing. The current implementation of BugFarm does not generate specific categories of
bugs. However, by incorporating some domain knowledge as additional contexts to our prompts,
one can expand the bug injection component of BugFarm to generate specific categories of bugs.
Learning-based bug/vulnerability generation. Learning-based bug generation techniques
were first proposed to overcome the limitations of manual defect model construction in mutation
testing [11]. Such techniques leverage machine learning to learn the bug or vulnerability patterns
from real-world bug fixes and generate mutants accordingly. DeepMutation [61] is such a technique
that relies on sequence-to-sequence neural machine translation for learning and generating bugs.
SemSeed [50] is a technique that extracts bug patterns from real-world bug fixes and injects them
into other programs so that the bug in the new program is syntactically different but semantically
similar. MutationMonkey [6] mines bug patterns from historical changes and transforms them into
mutation operators semi-automatically.

VulGen [46] combines pattern mining and deep learning to generate realistic bugs. Specifically,
it mines a large corpus of vulnerability-fixing commits to extract bug patterns, and trains a deep
learning model on the same dataset to learn where to inject the bugs. LEAM [59] learns to mutate
code from large examples of real-world bug-fixing commits. To generate syntactically correct bugs,
LEAM represents code as a sequence of AST nodes and learns to apply grammar rules to select and
modify the code. Finally, 𝜇BERT [36] produces buggy versions by replacing code tokens with the
spacial <mask> token, and uses CodeBERT to predict the masked token. Both LEAM and 𝜇BERT
incorporate beam search [23] to generate bugs that involve more than one statement.
BugFarm is superior to prior learning-based bug-generation techniques in several ways. First

and foremost, BugFarm does not involve any training or fine-tuning effort to learn bug patterns
and generate bugs. Consequently, it is independent of existing real-world bug datasets or a corpus
of bug-fixing commits. Second, while the majority of prior work only generates one-line bugs,
BugFarm can be configured to generate bugs that involve multiple statements. Third, BugFarm
is the first technique that targets the generation of bugs that can challenge learning-based bug
detectors and repair tools, or bugs that represent the AI programming tools’ mistakes, rather than
human mistakes. Our empirical evaluation confirmed that these properties result in the generation
of bugs that are hard-to-detect and hard-to-repair.

7 CONCLUDING REMARKS

Bug benchmarks are essential in software engineering to evaluate automated techniques concerning
bugs. The advent of learning-based software engineering demands even more for automated bug-
generation techniques, not only for evaluation but also for training or fine-tuning ML4SE models. In
this paper, we presented BugFarm, a model-in-the-loop technique for the automated generation of
hard-to-detect and hard-to-repair bugs. Our empirical evaluation shows the superiority of BugFarm
compared to alternative bug generation approaches in (1) generating unique and high-quality bugs,
(2) constructing bug benchmarks that are complex both in terms of detection and repair, and (3)
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injecting hard-to-detect bugs into arbitrary code. BugFarm does not rely on existing bug datasets
and is model- and programming language-agnostic.
We believe our novel perspective on the bug generation problem offers several directions for

future work. First of all, the focus of this paper is on attention analysis to identify the weak spots of
transformer-based models. While state-of-the-art code-language models and LLMs are all based on
transformers, we currently consider alternative approaches generalized to other neural architectures.
Second, we plan to evaluate the quality of our bugs for improving other software engineering
tasks, including bug localization, test oracles, and test-suite management. Based on the promising
results in bug detection and repair, we are confident that our generated bugs are useful for better
evaluation and challenging those tasks.
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