
Automated Bug Generation in the era of Large
Language Models

Ali Reza Ibrahimzada1, Yang Chen1, Ryan Rong2, Reyhaneh Jabbarvand1

1University of Illinois Urbana-Champaign, Urbana, IL, USA 2Stanford University, Stanford, CA, USA
{alirezai,yangc9,reyhaneh}@illinois.edu {ryanrong}@stanford.edu

Abstract—Bugs are essential in software engineering; many
research studies in the past decades have been proposed to
detect, localize, and repair bugs in software systems. Effectiveness
evaluation of such techniques requires complex bugs, i.e., those
that are hard to detect through testing and hard to repair
through debugging. From the classic software engineering point
of view, a hard-to-repair bug differs from the correct code
in multiple locations, making it hard to localize and repair.
Hard-to-detect bugs, on the other hand, manifest themselves
under specific test inputs and reachability conditions. These
two objectives, i.e., generating hard-to-detect and hard-to-repair
bugs, are mostly aligned; a bug generation technique can change
multiple statements to be covered only under a specific set of
inputs. However, these two objectives conflict in the learning-based
techniques: A bug should have a similar code representation to
the correct code in the training data to challenge a bug prediction
model to distinguish them. The hard-to-repair bug definition
remains the same but with a caveat: the more a bug differs
from the original code (at multiple locations), the more distant
their representations are and easier to detect. This demands new
techniques to generate bugs to complement existing bug datasets
to challenge learning-based bug prediction and repair techniques.

We propose BUGFARM to transform arbitrary code into
multiple hard-to-detect and hard-to-repair bugs. BUGFARM
mutates code in multiple locations (hard-to-repair) but leverages
attention analysis to only change the least attended locations
by the underlying model (hard-to-detect). Our comprehensive
evaluation of 435k+ bugs from over 1.9M mutants generated
by BUGFARM and two alternative approaches demonstrates our
superiority in generating bugs that are hard to detect by learning-
based bug prediction approaches (up to 40.53% higher False
Negative Rate and 10.76%, 5.2%, 28.93%, and 20.53% lower
Accuracy, Precision, Recall, and F1 score) and hard to repair by
state-of-the-art learning-based program repair technique (28%
repair success rate compared to 36% and 49% of LEAM and
µBERT bugs). BUGFARM is efficient, i.e., it takes nine seconds
to mutate a code with no training overhead.

I. INTRODUCTION

Machine learning is the new automation technology, and
software engineering is no exception: State-of-the-art software
analysis techniques either fine-tune pre-trained models or
prompt Large Language Models (LLMs) to automate code-
related tasks. This demands the existence of high-quality
datasets to assess their actual effectiveness. Concerning bug-
related tasks, such datasets should include a diverse set of
complex bugs, i.e., those that are hard to detect to challenge
bug prediction techniques and hard to repair for debugging
approaches.

From the classic software engineering perspective, hard-to-
detect bugs often exist at locations reachable only under a partic-

ular combination of test inputs or edge cases [27], [7]. However,
a similar definition does not stand concerning learning-based
bug prediction techniques. That is because they do not care
what inputs trigger the bug in the given code. In contrast, they
look for bug patterns in their training/fine-tuning data [46]
or to check if the code representation is closer to buggy or
correct examples they have seen [20]. As a result, existing real-
world bug datasets such as Defects4J [23], BUGSWARM [40],
BugsInPy [10], RegMiner [37], and ManySStuBs4J [2], while
necessary to assess their effectiveness in dealing with real-
world bugs, are not enough to assess their true effectiveness
and rule out data contamination [35]: To challenge the learning-
based bug prediction techniques, one should inject unseen bug
patterns such that the code representation of the generated bug
and correct code are similar.

Hard-to-repair bugs usually involve multiple statements to
challenge debugging techniques, localizing [26] and fixing
automatically. A similar definition is held in learning-based
software engineering, but with slight consideration: Modifying
a code in multiple locations can change the representation of
buggy code, making it easy for bug prediction models to detect
it. These two conflicting objectives make the problem of com-
plex bug generation for learning-based techniques challenging.
Existing automated mutant generation techniques [39], [24],
[21], by default, change a few locations in the code, making
their bugs easy to repair and detect. Some can be configured
to modify multiple lines randomly [24] or follow a set of
heuristics [39]. However, this may result in mutants with a
different code representation than the correct code, making
them easy to detect.

To advance automated bug generation concerning the evalua-
tion of learning-based bug-related tasks, we propose BUGFARM.
For a given code, BUGFARM prompts an LLM to mutate
multiple statements. Given that LLMs are potentially creative
in generative tasks, leveraging them helps avoid overfitting
to a limited number of mutation operators and bug patterns.
To ensure that changing many locations does not drastically
impact the code representation of mutants, BUGFARM analyzes
the attention of the underlying model and instructs LLMs only
to change those the model attends least to. The generated
code has a similar representation to the original one. Still,
it differs within multiple locations, making them hard to
detect by bug prediction approaches and hard to repair by
debugging techniques. BUGFARM is language-agnostic and can
generate bugs for any programming language. Like alternative

1 public static <E> TransformedSortedBag<E> transformedSortedBag(
 final SortedBag<E> bag, final Transformer<? super E, ? extends E>
 transformer){
2 final TransformedSortedBag<E> dec =
 new TransformedSortedBag<>(bag, transformer);
3 if (!bag.isEmpty()) {
4 @SuppressWarnings("unchecked")
5 final E[] values = (E[]) bag.toArray();
6 bag.clear();
7 for (final E value : values)
8 dec.decorated().add(transformer.transform(value));
9 }
10 return dec;
11 }

1 public static <E> TransformedSortedBag<E> transformedSortedBag(
 final SortedBag<E> bag, final Transformer<? super E, ? extends E>
 transformer){
2 final TransformedSortedBag<E> dec =
 new TransformedSortedBag<>(bag, transformer);
3 if (bag == null) {
4 @SuppressWarnings("unchecked")
5 final E[] values = (E[]) bag.toArray();
6 bag.clear();
7 for (final E value : values)
8 dec.decorated().add(transformer.transform(value));
9 }
10 return dec;
11 }

1 public static <E> TransformedSortedBag<E> transformedSortedBag(
 final SortedBag<E> bag, final Transformer<? super E, ? extends E>
 transformer){
2 final TransformedSortedBag<E> dec =
 new TransformedSortedBag<>(bag, transformer);
3 if (!!bag.isEmpty()) {
4 @SuppressWarnings("unchecked")
5 final E[] values = (E[]) bag.toArray();
6 bag.clear();
7 for (final E value : values)
8 dec.decorated().add(transformer.transform(value));
9 }
10 return dec;
11 }

(a) Original Method (b) Bug Generate by LEAM

1 public static <E> TransformedSortedBag<E> transformedSortedBag(
 final SortedBag<E> bag, final Transformer<? super E, ? extends E>
 transformer){
2 final TransformedSortedBag<E> dec = null;
3 if (!bag.isEmpty()) {
4 @SuppressWarnings("unchecked")
5 final E[] values = (E[]) bag.toArray();
6 bag.clear();
7 for (final E value : values)
8 dec.decorated().add(transformer.transform(value));
9 }
10 return null;
11 }

(c) Bug Generated by 𝜇BERT (d) Bug Generated by BugFarm

Fig. 1: An example showing the bugs generated for the original code (a) using LEAM (b), µBERT (c), and BUGFARM (d)

approaches, the BUGFARM creates unconfirmed bugs and
requires a validation process to confirm them as bugs. Our
notable contributions are:
• A new perspective into synthetic bug generation: We

propose a novel technique for bug generation concerning the
evaluation of the learning-based bug-related tasks. We do
not claim our bugs challenge classic bug detection (testing)
techniques, as we propose a new definition for hard-to-detect
bugs. Our goal is to demonstrate how ignoring properties of
learning-based techniques in mutant/bug generation results
in subpar assessment of them. The implementation of BUG-
FARM and all the generated bugs are publicly available [4].

• Empirical evaluation: We extensively evaluated BUGFARM
and two most recent learning-based mutant generation
approaches, LEAM [39] and µBERT [24]. Our evaluation of
435k+ bugs (from over 1.9M mutants) generated for 15 Java
projects confirm that compared to alternative approaches,
BUGFARM bugs are hard-to-detect (up to 40.53% higher
False Negative Rate and 10.76%, 5.2%, 28.93%, and 20.53%
lower Accuracy, Precision, Recall, and F1 score) and hard-
to-repair (28% repair success rate compared to 36% and 49%
of LEAM and µBERT bugs) by learning-based techniques.
A large-scale human study with 97 participants and 500
sampled survived mutants from these techniques shows
that BUGFARM mutants are harder to decide buggy or
equivalent. Also, generating effective bugs is more efficient
using BUGFARM.

II. ILLUSTRATIVE EXAMPLE

To illustrate the limitations of prior work and present the key
ideas behind BUGFARM, we use the code snippets in Figure 1.
There are several ways to inject bugs into original code by

adding, deleting, or modifying the 11 statements in its body
(some statements are split into two lines for better presentation).
However, the highlighted lines in green show the two least
attended statements (details in algorithm 1).

Figures 1b–1d show the bugs generated by three mutant
generation tools, BUGFARM, LEAM [39], and µBERT [24]
(bugs were confirmed through test execution). LEAM considers
code as a sequence of AST nodes and learns to apply grammar
rules to select and modify the code for bug generation. µBERT
selects code tokens corresponding to AST nodes, replaces them
with a special token <mask>, and asks CodeBERT to replace
them with new tokens for bug generation. BUGFARM identifies
the least attended statements and prompts an LLM to perform
bug-inducing transformations only on those lines. LEAM and
µBERT generate 19 and 68 mutants in total, out of which only
6 and 1 are confirmed bugs, respectively. BUGFARM generates
the bug in Figure 1d. The lines changed to introduce a bug
are highlighted in red.

BUGFARM bug is notable from various perspectives. First,
it involves multiple statements (hard to localize and repair).
Second, both modified statements are among the least attended
statements, making it hard for the model to distinguish the bug
from the original code (hard to detect). LEAM and µBERT
bugs modify only one line that is not among the least attended
statements. As a result, when running against our studied bug
prediction model (§V-C) and program repair model (§V-D),
they were easily detected and repaired. In contrast, the same
models failed to detect and repair BUGFARM bug.

III. APPROACH OVERVIEW

Figure 2 provides an overview of BUGFARM framework
consisting of three major components: (1) Method Extractor,
(2) Attention Analyzer, and (3) Bug Generator. BUGFARM takes

BUGFARM

Code-Language
Model

Buggy Methods

Project

Method Extractor

Parse Tree

Method
Declaration *

Attention Analyzer Bug Generator

Methods

Attention Weights

Least
Attended
Tokens

Least
Attended

Statements

Statement
Ranking

45%

10%

5%

15%

25%

45%

10%

5%

15%

25%

Validation

Can you
produce a bug in

statement 3?

25%

40%

15%

5%

15%

25%

35%

15%

10%

15%

20%

10%

20%

30%

20%

Is buggy
statement still

least attended?

Is buggy
statement still

least attended?

Is buggy
statement still

least attended?

Validation

LLM

Fig. 2: Overview of BUGFARM

a project and a pre-trained code-language model as inputs and
extracts the methods through a lightweight static analysis. For
each method, it identifies the change location candidates by
analyzing the model’s attention to individual code tokens. To
generate mutants for each method, BUGFARM crafts a prompt
to an LLM, including the original code and additional contexts
reflecting candidate locations for mutations.

The Method Extractor component takes the input project and
builds its corresponding parse tree to extract all the methods
in the source files. These methods will be passed as an input
to Attention Analyzer to identify the candidate locations for
the mutation (§IV-A).

Recent state-of-the-art learning-based software engineering
models are all transformer-based, which rely on attention
for neural code representation. So, to identify the candidate
locations to inject unnoticeable bugs, Attention Analyzer
extracts the corresponding attention of the model to code tokens
and identifies those with the lower contribution in the code
representation, i.e., those with less attention weight values.
Bug locations in BUGFARM are at the statement level; thereby,
BUGFARM ranks the input method’s statements based on the
#TLA/#T values and chooses the ones with the lowest value.
Here, TLA is the number of least attended tokens, and T
denotes the total number of tokens in the statement (§IV-B).

Finally, Bug Generator component takes the list of location
candidates and creates a prompt consisting of natural language
instruction, location candidates, and the original code. For the
generated mutants, BUGFARM computes the extent to which the
changes impact the model’s attention, and selects mutants with
negligible impact on the code representation. It also discards
the syntactically incorrect bugs for the sake of quality (§IV-C).

IV. BUGFARM

In this section, we first discuss how BUGFARM parses
the subjects and extracts methods as inputs for the Attention
Analyzer component. Next, we will provide a background on
the attention analysis required to understand the subsequent

components. Finally, we answer two main questions, namely
(1) How does BUGFARM decide where to inject bugs?, and
(2) how BUGFARM generates a set of bugs?

A. Method Extractor

BUGFARM can take a single method or a repository as input.
In the latter case, it first needs to extract the implemented
methods in the project for further mutation. To that end,
Method Extractor component leverages a parser depending
on the programming language used in the input project,
builds program parse trees, and extracts a list of methods and
constructors. Next, it collects the signature and body of the
method (excluding docstrings) and passes them to the Attention
Analyzer component.
B. Attention Analyzer

State-of-the-art code-language models are based on the
Transformer architecture [42]. To produce contextualized vector
representation of a sequence of tokens, Transformers rely on
Multi-Head Self-Attention. For a method that consists of n

tokens
−−→
Tkn = {m0, . . . ,mn−1}, a Transformer model with L

layers takes
−−→
Tkn as input and produces Hℓ = [hℓ

0, ...,hℓ
n−1].

Here, Hℓ corresponds to the hidden vector representations in
layer ℓ ∈ {1, 2, ...,L}. In each Transformer layer ℓ, multiple
self-attention heads are used to aggregate the previous layer’s
outputs. Consequently, for each token mi, the self-attention
assigns a set of attention weights concerning all other tokens in
the input sequence, i.e., Attention(mi) = {αi0, . . . , αin−1},
where αij indicates the relative attention of mi to mj .

Attention weights reflect the importance of each token in the
final code representation. Hence, BUGFARM analyze attention
weights to identify tokens (and subsequently, statements) with
the lowest attention weights. These statements are where
BUGFARM can change during bug-inducing transformation
without impacting the overall representation of the method.
Algorithm 1 explains our approach for attention analysis,
which takes the original method, a threshold value k, and
a transformer-based model as inputs and pinpoints the k% of

the least attended statements LAS as outputs. To that end, it
first extracts the list of least attended tokens in the method
LAT (Lines 1-10) and uses them to pinpoint the least attended
statements LAS (Lines 11-20).

The algorithm first identifies the tokens
−−→
Tkn and statements−−→

Smt in the given method and initializes the LAT and LAS
variables to be empty (Lines 1-3). Next, it queries the model
M to extract the self-attention values (Line 4). For a model M
with L layers and H attention heads per layer, the attention
values will be averaged across heads and layers, resulting
in an n × n matrix, where n is the number of tokens. For
each token mi in the method, the algorithm further averages
the attention weight relative to other tokens (averaging the
values per column in the self-attention matrix) to compute a
single attention weight value for each token mi in the method
(Line 5). Given that we are interested in the least attended
tokens in the code, Algorithm 1 sorts the attention weight
vector,

−−−−−−−−→
TknAttnW , populates their corresponding indices in−−−−−−−−−−→

SortedTknInd (Line 6), and identifies the top k% of least
attended tokens, LAT (Lines 7-10).

Algorithm 1: Attention Analyzer
Inputs: Method method, Threshold k, Transformer-based model M
Output: Least attended statements LAS

1
−−→
Tkn← getTokens(method);

2
−−→
Smt← getStatements(method);

3 LAT ,LAS ← ∅;
4 SelfAttnW ← getSelfAttnW (M ,

−−→
Tkn);

5
−−−−−−−−→
TknAttnW ← getTknAttnW (SelfAttnW);

6
−−−−−−−−−−→
SortedTknInd← getSortedTknIndices(TknAttnW);

7 i ← 0;
8 while i < ⌈(k/100) ∗ SortedTknInd .length⌉ do
9 LAT ← LAT ∪ Tkn[SortedTknInd[i]];

10 i ← i+ 1;

11 SmtScore ← ∅;
12 foreach si ∈ Smt do
13 score ← |si ∩ LAT |/si .length;
14 SmtScore ← SmtScore ∪ ⟨si, score⟩;
15 SortedSmtInd← getSortedSmtIndices(SmtScore);
16 i ← 0;
17 while i < ⌈(k/100) ∗ SortedSmtInd .length⌉ do
18 LAS ← LAS ∪ Smt[SortedSmtInd[i]];
19 i ← i+ 1;

20 return LAS

With the least attended tokens extracted, the algorithm can
identify the least attended statements, LAS. To that end, it
weighs each statement by a score (Lines 11-14), which is the
ratio of the number of least attended tokens in that statement,
normalized by its length. The key idea here is that a statement
with the highest overlap between least attended tokens should
achieve a lower score and, thus, be considered the least attended
statement. Without normalizing the statement length, longer
statements will be penalized, i.e., BUGFARM never selects them
to mutate. Finally, the statements are sorted in ascending order
based on their scores, and the least k% attended statements
(we take the ceiling in case k% of total statements is less than
one) will be returned as LAS (Lines 15-20).

C. Bug Generator
Bug generation involves modifying, adding, or deleting code

segments from an original method to change the expected
behavior of the program. The Bug Generator module of
BUGFARM takes a method and its corresponding set of LAS
identified in the previous step as inputs and crafts LLM prompts
to generate N buggy versions for the method as outputs. Our
intuition for making BUGFARM configurable is that our bugs
will likely be used as training/fine-tuning data for bug-related
tasks. So, generating multiple buggy versions of a single method
would be helpful for a model to distinguish between buggy
and non-buggy code more easily. The total number of bugs,
however, also depends on the size of the method and threshold
value k. For example, k = 10% for methods with less than 10
statements returns one statement as LAS, and changing that
statement in N unique ways may be infeasible.

Algorithm 2: Bug Generator
Inputs: Method method, Least attended statements LAS, Number

of bugs N , Transformer-based model M
Output: Buggy methods Bugs

1 Bugs ← ∅;
2 LASInd ← getLASIndices(method ,LAS);
3 method ← addIndices(method);
4 Prompt ← ”Inject $N bugs in the following method by changing

only the statements at locations $LASInd: $method”;
5 Responses ← queryLLM (Prompt);
6 foreach Response ∈ Responses do
7 if !isParseable(Response) then
8 continue;

9 newLAS ← getLAS(Response,M);
10 check ← true;
11 foreach stmt ∈ getDiff(Response,method) do
12 if stmt /∈ newLAS then
13 check ← false;
14 break;

15 if check then
16 Bugs← Bugs ∪ Response;

BUGFARM’s prompts consist of three parts. The first part
is the natural language instruction asking LLM to generate
the bugs. The second part provides contextual information
about where to inject the bug, i.e., only to consider the least
attended statements, LAS, for making bug-inducing changes.
Finally, we include the entire method, including both signature
and the method body, in the prompt. Such prompts are LLM-
agnostic, i.e., they can be used with various existing LLMs,
such as LLaMa [28], PaLM [18], Copilot [17], Alpaca [38],
and ChatGPT [3]. The only consideration is to check if the
prompt’s size matches the LLM context window. After the
LLM’s response, Bug Generator component validates (1) if
they are syntactically correct and (2) if the changes do not
impact the attention of the model. The responses that do not
pass these two checks will be discarded.

Algorithm 2 demonstrates BUGFARM’s bug generation and
validation approach. It starts by initializing the output variable
Bugs (Line 1) and getting the indices of LASs in method
(Line 2). Next, it adds an index to each statement in method
(Line 3). This will help us to refer to LASs in the prompt by

number instead of including the whole statements, resulting in
a reduction of the prompt size. This is specifically important
for longer methods or statements, as the context window of
LLMs is limited [29], [45]. Next, we will craft the prompt with
the required context, i.e., indexed method and bug injection
location, and send the prompt to an LLM (Lines 4-5) 1. Finally,
once the LLM responds, we check if the generated bugs are
syntactically correct (Lines 7-8) and if the changed statements
are among the least attended statements by the model (Lines
9-14) to add them to the acceptable set of bugs (Lines 15-16).

V. EVALUATION

To evaluate the effectiveness of BUGFARM, we compare it
with two state-of-the-art alternative approaches, namely LEAM
and µBERT, investigating the following research questions 2:
RQ1: Characteristics of the Generated Bugs. To what extent
can BUGFARM and alternative techniques successfully inject
bugs into arbitrary code? What are the characteristics of the
generated bugs by each approach?
RQ2: Effectiveness in Generating Hard-to-Detect Bugs.
How well do learning-based bug prediction models perform
at detecting BUGFARM bugs compared to other techniques?
RQ3: Effectiveness in Generating Hard-to-Repair Bugs.
To what extent do learning-based Automated Program Repair
(APR) techniques repair BUGFARM bugs compared to those
generated by alternative approaches?
RQ4: Performance. How long does it take to generate and
validate bugs using BUGFARM and other approaches?

A. Experiment Setup and Data Availability

Mutant Generation. We compare BUGFARM with two
most recent mutant generation techniques, µBERT [24] and
LEAM [39]. To inject mutants, µBERT selects AST nodes
representative of program behavior—literals, identifiers, expres-
sions, assignments, object fields, method calls, array access,
and types. Then, it replaces the tokens in selected AST nodes
with the special token <mask> and uses CodeBERT to predict
the masked token. The intuition is that if CodeBERT predicts
a token different from the original one, the transformation
introduces a bug. LEAM is a deep learning-based technique
that learns to mutate code from large examples of real-world
bugs. To that end, they represent code as a sequence of AST
nodes and learn to apply eight grammar rules to select and
modify the code. Both µBERT and LEAM claim to generate
better bugs (mutants confirmed by test execution) compared to
classic approaches, namely PIT [12] and Major [22]. Therefore,
we did not include classic techniques in our evaluation.

For BUGFARM, we used the threshold value k = 10%,
mainly because alternative approaches do not change more than
a handful of statements in a given code (more details in §V-B).
Our experimental results in the rest of this section confirm that
even with such a low threshold, we still surpass other techniques

1The natural language part of our prompts is more complex than the example
here. The readers can refer to our artifact to see the exact prompts [4]

2The detailed results and additional research questions, e.g., ablation study
demonstrating the necessity of prompt crafting, are publicly available [4].

in generating hard-to-detect (§V-C) and repair (§V-D) bugs. A
higher threshold will make our bugs more complex compared
to other approaches, improving margins. We also configured
BUGFARM to generate at most three mutants per method (N =
3 in Algorithm 2) as our preliminary results show that with
a higher number, the generated bugs for k = 10% are almost
identical. With a higher threshold value, one can also increase
N and generate more diverse bugs. The current implementation
of BUGFARM’s Bug Generator component uses GPT-3.5-turbo
due to its accessibility and effectiveness at a reasonable cost
($0.0004 per mutant on average). Using a more advanced LLM
such as GPT-4 likely yields better results.

Automated Bug Confirmation. BUGFARM and alternative
approaches generate mutants, which entails implementing a
confirmation process to ensure syntactical correctness and rule
out equivalent mutants. Following the related work [39], [24],
our confirmation procedure follows three steps: (1) running
existing test suites on the original project and selecting the
green tests; (2) compiling the generated mutants from the
methods covered by the green tests and discarding syntactically
incorrect ones; and (3) re-executing previously passed tests on
syntactically correct mutants and choosing those killed through
test execution. Due to the possibility of generating mutants
that are not equivalent but survive test execution, we further
performed a manual investigation on a subset of survived
mutants. This will ensure the fairness of the experiments
and the generalizability of the claims in the paper. All the
experiments were conducted with killed mutants, which we
refer to as confirmed bugs. The mutant generation techniques
generated a total 1, 908, 566 mutants, out of which 699, 575
were syntactically correct, and 434, 215 identified as confirmed
bugs through testing (details in §V-B).

Manual Bug Confirmation. From the 265, 360 syntactically
correct survived mutants, we sampled 300, controlling equal
contributions from different sets of generated mutants. We then
crowd-sourced the task of mutant evaluation to 97 individuals
with varying software engineering expertise, from beginner
to expert with at least two years of industry experience. We
provided each participant with the mutant and original codes
and asked them to label mutants with one of Yes (the mutant
is a bug), No (the mutant is equivalent), or Maybe (uncertain
whether the mutants is equivalent) labels. Individuals monitored
their time and reported the amount spent on the task. We also
asked them to evaluate how challenging it was to decide on
the assigned mutants’ labels. Each mutant was labeled by three
individuals, and we decided on the final label based on the
majority vote.

The labeling process took 290 person-hours and participants
delivered 900 labels (487 Yes, 384 No, and 29 Maybe). The
majority voting provided us with 143 additional confirmed bugs,
where 72 (50.35%), 53 (37.06%), and 18 (12.59%) of them
belong to BUGFARM, µBERT, and LEAM, respectively. During
the labeling, we asked participants to identify the difficulty
level for labeling each mutant, i.e., whether it was challenging
for them to identify the mutant was equivalent or not. Figure 3

20.2%

22.3%

41.5%

4.3%
11.7%

BERT
Equally Easy
BugFarm
Equally Hard
LEAM

Fig. 3: Evaluating the complexity of generated mutants by
human subjects

shows that BUGFARM’s mutants were more challenging than
other approaches for the participant to label. We believe that
this large-scale human study accounts for the threat to the
validity of choosing killed mutants as confirmed bugs.
Bug Prediction Models. When selecting bug prediction
models, we had to consider the following criteria: the current
implementation of BUGFARM’s Attention Analyzer works
on transformer-based models and requires the availability of
models (weights and internals) to perform the attention analysis
(we will consider including closed-source models as future
work). We could not find any custom bug prediction model
publicly or per request available with such characteristics.
Consequently, we chose three pre-trained code-language models
that are widely used by the research community for fine-tuning,
namely CodeBERT [15], CodeT5 [43], and NATGEN [11]3. We
fine-tuned these models using real-world bugs and evaluated
the effectiveness of the outcome in predicting bugs generated
by different techniques.

CodeBERT is an encoder-only transformer model based on
BERT [13] architecture, which is trained on 2.1M bi-modal
(natural language and code pairs) and 6.4M uni-modal (code
only) data from CodeSearchNet [19] dataset. The main learning
objectives in CodeBERT are Masked Language Modeling
(MLM)—the model learns to predict the tokens replaced by a
special mask token—and Replaced Token Detection (RTD)—
the model learns to detect which token does not belong to the
original data. CodeT5 is an encoder-decoder transformer model
based on T5 [32] architecture. CodeT5 is trained on 8.35M
functions from various programming languages provided by
CodeSearchNet [19] and BigQuery [1] dataset, and its training
objectives include masked span and masked identifier prediction.
Such objectives enable the model to understand code semantics
better than CodeBERT.

NATGEN is also an encoder-decoder transformer model,
trained on a generative task of naturalizing source code.
Specifically, NATGEN starts with CodeT5—based model—
parameters and continues the training with a new objective, i.e.,
re-constructing the original code (natural) given transformed

3Fine-tuning larger models requires non-trivial computing resources. Our
experiments will show that models superior in other code-related tasks (e.g.,
CodeT5 over CodeBERT) show the significance of BUGFARM better. We
expect this to hold for larger models as well.

code (de-natural). It uses 8.1M pairs of natural and de-natural
functions from CodeSearchNet [19] and C/C#. We used the
base models of each for our experiments.

Automated Program Repair Model. To evaluate the effec-
tiveness of learning-based techniques in repairing generated
bugs, we used FitRepair [44], a state-of-the-art APR technique
that outperforms existing approaches. It leverages information
retrieval and static analysis to implement domain-specific fine-
tuning and prompting strategies. Per the authors’ instructions,
we used FitRepair with CodeT5-Large in a zero-shot manner
to generate the patches for µBERT, LEAM, and BUGFARM
confirmed bugs and validated patches through test execution.

Subjects. BUGFARM is programming-language agnostic; none
of its components depend on a specific programming language.
However, we chose Java projects in our experiments for
the following reasons: (1) LEAM’s pre-trained model is on
Java, and they have no alternative training dataset for other
programming languages; (2) we needed real-world bug datasets
for RQ2, and most of the existing real-world bug datasets are in
Java. For a fair comparison, we used Defects4J V 2.0 projects
(but used their latest version) as a baseline for bug generation
since the alternative approaches are shown to work on them
with no issues. The current version of BUGFARM supports
Maven projects only, so we excluded Mockito and Closure
projects from the subjects. The first two columns of Table I
show the list of our 15 subjects and the number of methods
per subject used for mutant generation.

Evaluation Metrics. To compare the performance of bug
prediction models, we use accuracy, precision, recall, F1 score,
and False Negative Rate (FNR) as our metrics. To evaluate the
APR results, we measure the repair success rate, i.e., the number
of bugs the technique successfully patches. True Positive (TP)
is when the code is buggy, and the model predicts it as buggy.
True Negative (TN) is when the code is not buggy, and the
model predicts it as non-buggy. False Positive (FP) is when
code is not buggy, but the model predicts it as buggy. False
Negative (FN) is when the code is buggy, but the model predicts
it as non-buggy.

B. RQ1: Characteristics of the Generated Bugs

Table I presents the metrics and their values calculated
for the studied approaches (For BUGFARM, the reported
number is aggregated or averaged across all baseline models).
Columns SCM and CB show the number of syntactically
correct mutants and confirmed bugs, respectively. The mutant
generation techniques overall generated a total of 1, 908, 566
mutants, out of which 699, 575 were syntactically correct
and 434, 358 confirmed as bugs (through test execution and
human study). The percentage of syntactically correct to all
generated mutants in BUGFARM is 85% compared to that of
59.4% and 61.82% for LEAM and µBERT, corroborating
a higher quality of our mutants. A higher percentage of
confirmed bugs (85.55% in BUGFARM compared to 59.41%
and 61.84% for LEAM and µBERT), along with the human
study results presented in §V-A, show the code transformations

TABLE I: Comparing the characteristics of bugs generated by BUGFARM, µBERT, and LEAM. M: # Methods, SCM: #
Syntactically Correct Mutants, CB: # Confirmed Bugs, SI: # Statements Involved in bug generation, LD: Lines Deleted in bug
generation, ED: Edit Distance, OL: Overlap with LEAM, OM: Overlap with µBERT.

Subjects M BUGFARM LEAM [39] µBERT [24]
SCM CB SI LD ED OL OM SCM CB SI LD ED SCM CB SI LD ED

cli 276 295 266 2.9 0.0% 33.2 ⟨13.9%,0.6⟩ ⟨8.6%,0.7⟩ 2126 1388 2.6 13.69% 26.1 2053 1532 2.0 0.07% 19.3
codec 901 544 360 3.1 0.0% 31.6 ⟨3.1%,0.7⟩ ⟨5.5%,0.9⟩ 4607 2130 2.8 7.84% 22.4 14738 9551 2.0 0.0% 17.9
collections 4440 3775 3175 2.9 0.0% 29.7 ⟨11.1%,0.6⟩ ⟨5.1%,0.7⟩ 21379 11266 2.8 7.77% 20.9 34038 22196 2.0 0.0% 20.0
compress 4123 573 468 3.0 0.0% 29.4 ⟨4.4%,0.7⟩ ⟨2.4%,0.8⟩ 20401 9373 2.6 12.55% 24.5 57815 23602 2.0 0.0% 24.2
csv 248 282 252 2.7 0.0% 24.9 ⟨11.9%,0.7⟩ ⟨1.5%,0.7⟩ 1803 1189 2.8 14.55% 33.5 131 109 2.0 0.0% 7.0
jxpath 1672 1152 948 3.3 0.0% 28.0 ⟨8.0%,0.7⟩ ⟨6.1%,0.8⟩ 11511 6169 2.9 15.24% 26.2 21335 10907 2.0 0.0% 25.8
lang 3810 4421 3791 3.0 0.0% 30.1 ⟨7.5%,0.7⟩ ⟨3.1%,0.8⟩ 26365 16316 2.7 9.69% 21.4 23312 15732 2.0 0.02% 21.1
math 5796 6466 6207 3.4 0.0% 34.2 ⟨4.4%,0.7⟩ ⟨2.3%,0.8⟩ 43090 42262 2.7 8.43% 17.0 85393 83512 2.0 0.01% 18.3
gson 985 631 545 3.3 0.0% 38.2 ⟨7.3%,0.7⟩ ⟨1.6%,0.7⟩ 4896 2992 2.6 17.95% 27.9 4173 2067 2.0 0.05% 19.8
jackson-core 2626 2281 1732 4.0 0.0% 43.1 ⟨2.9%,0.7⟩ ⟨2.3%,0.7⟩ 21472 9963 2.5 22.58% 25.8 19118 9310 2.1 0.0% 21.6
jackson-db 8076 4828 3965 3.9 0.0% 41.9 ⟨7.2%,0.7⟩ ⟨6.9%,0.7⟩ 36155 18454 2.8 12.17% 28.7 51032 22454 2.0 0.0% 22.3
jackson-xml 586 312 258 3.9 0.0% 44.0 ⟨6.3%,0.7⟩ ⟨5.9%,0.7⟩ 3096 1580 2.7 12.85% 31.1 2576 1226 2.0 0.08% 14.7
jfreechart 8602 4051 3186 3.1 0.0% 27.1 ⟨7.4%,0.7⟩ ⟨1.1%,0.8⟩ 40313 17987 2.5 10.64% 19.8 18924 7045 2.0 0.07% 28.2
joda-time 4279 4188 3734 2.6 0.0% 22.1 ⟨8.6%,0.6⟩ ⟨3.6%,0.7⟩ 26224 15641 2.9 6.29% 24.7 49907 28694 2.0 0.0% 21.1
jsoup 1642 1561 1356 2.8 0.0% 28.5 ⟨9.4%,0.7⟩ ⟨4.7%,0.7⟩ 9534 5456 2.5 14.15% 23.6 6699 4013 2.2 0.05% 21.0
Total 48062 35359 30242 - - - - - 272972 162166 - - - 391244 241950 - - -
Average 3204 2357 2016 3.2 0.0% 32.4 ⟨7.6%,0.7⟩ ⟨4.0%,0.7⟩ 18198 10811 2.7 12.43% 24.9 26083 16130 2.0 0.02% 20.2

by BUGFARM are more likely to be bugs. The rest of the
metrics are computed for confirmed bugs, which we simply
refer to as bugs in the rest of the paper:

• # Statements involved: This metric indicates the number of
statements added, removed, or modified to generate the bugs.
On average, even with the threshold values of k = 10%,
BUGFARM changes more statements to generate bugs
compared to LEAM and µBERT. Although #SI is higher
for BUGFARM bugs, given that these statements are among
the least attended statements, we will later see that the
models will have a harder time distinguishing them from
the correct code (more details in §V-C).

• # Lines deleted: Deleting an entire statement is very likely
to change attention significantly and result in a runtime
exception rather than a semantic bug. Columns LD show the
percentage of bugs created by only deleting or commenting
statements. BUGFARM does not delete (or comment) any
statement through bug-inducing transformation (0% on
average for all the projects), compared to LEAM (12.43%)
and µBERT (0.02%).

• Edit distance: We also wanted to compare the edit distance
between the original and generated bugs. We used Lev-
enshtein [25] edit distance, which measures the minimum
number of single-character edits—insertions, deletions, or
substitutions—required to change one string into another. The
results for edit distance normalized by #CB are available
under columns ED. Compared to LEAM and µBERT,
BUGFARM’s bugs have higher ED values. This indicates
that BUGFARM’s changes to the code are bigger yet less
noticeable, as we will show in RQ2 and RQ3.

• Uniqueness: We were interested to see how much our
bugs overlap with those generated by µBERT and LEAM.
To that end, we measured the Exact Match (EM) and
CodeBLEU [33] values between each BUGFARM bug with
all the corresponding bugs generated by µBERT and LEAM.
For a given method A, if BUGFARM generates three bugs
b1, b2, b3 and LEAM generates four l1, l2, l3, l4, we construct

12 pairs of ⟨bi, lj⟩ to compute the EM and CodeBLEU. EM is
a strict all-or-nothing metric; being off by a single character
results in a score of 0. If the characters of bi exactly match
the characters of bj , EM = 1 for the pair; otherwise, EM
= 0. CodeBLEU is a metric to measure weighted n-gram
match between the pairs by considering not just the code
tokens but also code syntax via abstract syntax trees (AST)
and code semantics via data flow.
The <EM,CodeBLEU> values are shown under columns
OL (overlap with LEAM) and OM (overlap with µBERT).
These numbers show that only 7.6% and 4% of the
total bugs generated by BUGFARM for all the projects
overlap with LEAM and µBERT, respectively, confirming
the uniqueness of BUGFARM bugs. The high number for
CodeBLEU (0.7 on average for both) shows that although
BUGFARM bugs are better at challenging learning-based
techniques (§V-C-§V-D), they are semantically similar
to LEAM and µBERT bugs; potentially as effective as
them in their evaluated tasks [39].

Summary. Compared to other techniques, BUGFARM’s
bug-inducing transformations involve more statement
modification and change of several code tokens. The
overlap between BUGFARM bugs and other approaches
is low, demonstrating their uniqueness.

C. RQ2: Effectiveness in Generating Hard-to-Detect Bugs

In this research question, we investigate the effectiveness
of bug prediction models on BUGFARM bugs compared to
alternative approaches. Given the unavailability of off-the-shelf
models as discussed in §V-A, we fine-tuned three pre-trained
code-language models (CodeBERT, CodeT5, and NATGEN)
using real-world and synthetic bugs. We adapted best practices
for fine-tuning transformer models and used the same class
distribution in fine-tuning, validating, and testing bug prediction
models. All models were fine-tuned for at most 10 epochs with

TABLE II: Effectiveness of studied fine-tuned models in predicting synthetic bugs. Each set of rows shows the same pre-trained
model that is fine-tuned on the same dataset but tested on different bug datasets.

Fine-tune-Model-Test Acc Prec Rec F1 FNR
1 µBERT-CodeBERT-BUGFARM 71.88 (4.49% ↓) 89.94 (1.11% ↓) 49.26 (12.18% ↓) 63.66 (8.26% ↓) 50.74 (15.55% ↑)
2 µBERT-CodeBERT-LEAM 75.26 90.95 56.09 69.39 43.91
3 LEAM-CodeBERT-BUGFARM 69.42 (10.76% ↓) 94.05 (1.48% ↓) 41.47 (28.93% ↓) 57.56 (20.53% ↓) 58.53 (40.53% ↑)
4 LEAM-CodeBERT-µBERT 77.79 95.46 58.35 72.43 41.65
5 µBERT-CodeT5-BUGFARM 75.35 (0.91% ↓) 87.45 (0.35% ↓) 59.2 (2.18% ↓) 70.6 (1.45% ↓) 40.8 (3.34% ↑)
6 µBERT-CodeT5-LEAM 76.04 87.76 60.52 71.64 39.48
7 LEAM-CodeT5-BUGFARM 71.27 (8.90% ↓) 89.29 (1.85% ↓) 48.35 (22.86% ↓) 62.73 (15.48% ↓) 51.65 (38.40% ↑)
8 LEAM-CodeT5-µBERT 78.23 90.97 62.68 74.22 37.32
9 µBERT-NATGEN-BUGFARM 74.42 (1.29% ↓) 85.07 (0.29% ↓) 59.24 (3.41% ↓) 69.84 (2.13% ↓) 40.76 (5.40% ↑)
10 µBERT-NATGEN-LEAM 75.39 85.32 61.33 71.36 38.67
11 LEAM-NATGEN-BUGFARM 69.46 (9.33% ↓) 88.35 (2.14% ↓) 44.84 (24.80% ↓) 59.49 (17.17% ↓) 55.16 (36.64% ↑)
12 LEAM-NATGEN-µBERT 76.61 90.28 59.63 71.82 40.37
13 REAL-CodeBERT-BUGFARM 53.02 (3.84% ↓) 55.23 (5.20% ↓) 31.92 (11.92% ↓) 40.46 (9.44% ↓) 68.08 (6.78% ↑)
14 REAL-CodeBERT-µBERT 55.14 58.26 36.24 44.68 63.76
15 REAL-CodeBERT-LEAM 57.62 61.38 41.12 49.25 58.88
16 REAL-CodeT5-BUGFARM 49.02 (4.72% ↓) 48.93 (5.03% ↓) 44.64 (9.18% ↓) 46.69 (7.20% ↓) 55.36 (8.87% ↑)
17 REAL-CodeT5-µBERT 51.45 51.52 49.15 50.31 50.85
18 REAL-CodeT5-LEAM 53.81 53.79 54.05 53.92 45.95
19 REAL-NATGEN-BUGFARM 50.75 (0.12% ↓) 50.62 (0.10% ↓) 61.07 (0.42% ↓) 55.36 (0.23% ↓) 38.93 (0.67% ↑)
20 REAL-NATGEN-µBERT 50.81 50.67 61.33 55.49 38.67
21 REAL-NATGEN-LEAM 53.81 53.01 67.05 59.21 32.9

loss-based early-stopping criteria of two consecutive epochs4.
We selected the model with the least validation error, repeated
the evaluation 10 times, and reported the average values.

Generally, one should run BUGFARM on each model for bug
generation. However, our investigation showed that fine-tuning
does not greatly impact the set of LAS (Algorithm 1 in §IV-B).
This is consistent with the findings of prior work that shows
fine-tuning only changes the attention of the last few layers,
not impacting the overall attention of the model [36]. It also
shows that many of the generated BUGFARM bugs in this
study are reusable by other researchers. Consequently, we only
generated bugs for the methods per each model whose LAS
set was changed compared to the baseline pre-trained model.

1) Fine-tuning on synthetic bugs: It is possible that a
learning-based bug prediction technique uses synthetic bugs
for training or fine-tuning. So, we first investigate how
challenging BUGFARM’s bugs are, compared to other syn-
thetic bugs, to challenge such models. To that end, we fine-
tuned the three pre-trained models on LEAM and µBERT
bugs. This provided us with six fine-tuned bug prediction
models, namely, µBERT-CodeBERT, µBERT-CodeT5, µBERT-
NATGEN, LEAM-CodeBERT, LEAM-CodeT5, and LEAM-
NATGEN. We then evaluated each on BUGFARM and the
other approach, whose bugs were not used for fine-tuning. For
example, we evaluated µBERT-CodeBERT on bugs generated
by BUGFARM and LEAM. This pairwise comparison will show
us which techniques generate bugs that are harder to detect.

The rows 1–12 in Table II show the result of this experiment.
For Accuracy, Precision, Recall, and F1 score, the lower metric
value indicates the approach’s superiority (bugs are harder to
distinguish from correct code, hence being detected). For FNR,
a higher metric value indicates higher FN, showing the model
struggles more to detect them. From these results, we can

4this is the default setting for fine-tuning CodeT5. To ensure a fair
comparison, we checked that all the models converged before 10 epochs.

clearly see that BUGFARM bugs always achieve higher
values for FNR (average margin of 23.31% (min=3.34%,
max=40.53%)) and lower values for the other metrics
(average margin of Accuracy=5.95%, Precision=1.2%,
Recall=15.73%, and F1-score=10.84%).

Furthermore, F1 score values suggest the models fine-tuned
on LEAM have a harder time detecting BUGFARM bugs than
those fine-tuned on µBERT. We believe this is because µBERT
bugs are more diverse due to changing many tokens of the
code and combining them through beam search, compared to
LEAM bugs that try to mimic the bugs scrapped from the
GitHub issue trackers.

Note that we have not used BUGFARM bugs for fine-
tuning models. The reason is that BUGFARM bugs are in-
distribution samples, and alterations are within the decision
boundaries for models: we only accept mutants that do not
change the model’s attention so that the code representation
of buggy and correct code is similar (Algorithm 2 Lines
11–14). Fine-tuning on such examples theoretically cannot
improve in-distribution performance and may even worsen
out-of-distribution performance [?]. As we claimed before,
BUGFARM bugs are for evaluating and challenging learning-
based bug-related tasks and should be used for that purpose
only.

2) Fine-tuning on real-world bugs: To avoid any bias in our
conclusion based on synthetic bugs, we also fine-tuned baseline
models with real-world bugs from three datasets, namely
Defects4J [23]5, BUGSWARM [40], and RegMiner [37]. The
real-world evaluation dataset consists of 723, 3285, and 36412
original and buggy methods from Defects4J, BUGSWARM, and
RegMiner, respectively. This results in three bug prediction
models, i.e., REAL-CodeBERT, REAL-CodeT5, and REAL-
NATGEN. We evaluated each model on BUGFARM, µBERT,

5We could use the bugs from Mockito and Closure projects, which were
excluded from our subjects since BUGFARM only supports Maven at this time

TABLE III: Effectiveness of FitRepair in repairing synthetic bugs. SI: Statements involved.

LEAM [39] µBERT [24] BUGFARM-CodeBERT BUGFARM-CodeT5 BUGFARM-NATGEN
Total Bugs (SI=1,SI=2,SI>2) 200 (174,25,1) 200 (187,13,0) 200 (125,40,35) 200 (92,43,65) 200 (104,30,66)

Success Rate 36% 49% 29% 29% 28%

and LEAM bugs. The rows 13–21 in Table II show the results
of this experiment, with margins indicating the difference with
respect to second-best synthetic bug dataset. These results
show similar trends we observed with models fine-tuned
on synthetic bugs, i.e., BUGFARM bugs result in higher
FNR (54.12% on average) and lower Accuracy (50.93% on
average), Precision (51.59% on average), Recall (45.88%
on average), and F1 score (47.5% on average) values.

That models fine-tuned on real-world bugs underperform
those fine-tuned on synthetic bugs across all metrics. A possible
justification for this observation is the distribution shift between
real-world bugs (used for fine-tuning) and synthetic bugs (used
for testing). The two root causes for these distribution shifts
are (1) the real-world bugs belonging to projects different than
those from which we generated the synthetic bugs; and (2)
the nature of real-world bugs is different from synthetic bugs.
Especially for BUGFARM and µBERT, the bug generation
objective does not include any similarity to real-world bugs.

Summary. Bug prediction models, regardless of whether
the fine-tuning dataset is from a synthetic or real-world
bug dataset, have a harder time detecting BUGFARM
bugs than other synthetic bugs.

D. RQ3: Effectiveness in Generating Hard-to-Repair Bugs

To further demonstrate the complexity of our bugs, we
evaluate the ability of FitRepair in repairing BUGFARM,
µBERT, and LEAM bugs. We configured FitRepair to generate
100 patches 6 per bug and terminate if this takes more than five
hours 7. Given the time-consuming nature of program repair,
we evaluated FitRepair on 1000 generated bugs 8, constitutes
from 200 sampled confirmed bugs from each bug dataset
(LEAM, µBERT, BUGFARM-CodeBERT, BUGFARM-CodeT5,
and BUGFARM-NATGEN). When sampling, we controlled the
selection of bugs from the same methods for all approaches:
we sorted them based on the descending order of method size—
measured by the number of characters—and picked the top 200.
Our rationale is that the potential locations for bug injection
increase when methods are longer. As a result, the likelihood of
observing different bugs produced by each technique is higher
(similar to the illustrative example in §II). The collected bugs
are from 14 out of 15 subject projects.

The first row in Table III shows the distribution of generated
bugs based on the number of statements involved in bug
generation (#SI from RQ1). Most subject bugs from LEAM
and µBERT differ in only one line with the original code,
while BUGFARM bugs are more diverse concerning this metric.

6The tool often generates fewer patches than this max allowance value.
7Confirmed by FitRepair authors to ensure proper performance.
8This number is 2.5 times than the bugs in FitRepair evaluation.

Each bug dataset took FitRepair two to seven hours to generate
35 patches, on average. We validated all the generated patches
for each bug, and if one of the patches results in a green test
suite, we ignore other patches and consider the bug repaired
by FitRepair. The validation process of 1000 bugs took over
100 hours. The second row of Table III shows the percentages
of bugs that FitRepair successfully patched.

FitRepair successfully repaired 36% and 49% of the
LEAM and µBERT bugs, respectively. In contrast, it can
only repair 29%, 29%, and 28% of BUGFARM bugs
generated for each baseline model. This is not surprising,
as APR techniques are known to perform better in repairing
bugs with SI=1. In fact, 87% of correct patches for µBERT
and LEAM only differ with the corresponding bug in one
line. This value is only 62% for BUGFARM, which implies a
higher complexity of BUGFARM’s one-line bugs compared to
alternative approaches.

Our deeper investigation of the nature of bugs shows that
LEAM and µBERT bugs mostly change the conditional/branch
statements. Since repair templates of FitRepair are specifically
designed to repair bugs in conditional/branch statements
(logical expression in if statement), it can repair LEAM and
µBERT bugs better. In contrast, BUGFARM is more creative
in introducing bug injection due to the power of LLMs in
code synthesis, and it considers locations that the model
attends less to for injecting the bugs. Consequently, it can
challenge learning-based APR techniques crafted to repair
known bug patterns. By looking at the other patches that fixed
bugs with SI>=2, we observed the same pattern, i.e., there
was at least one statement changing the conditional statements.

Summary. When applied to the same method, BUG-
FARM generates bugs that are harder to repair by
learning-based repair techniques compared to alternative
approaches. The power of BUGFARM will become more
evident when the methods are longer, letting it change
multiple locations in the method to introduce the bug.

E. RQ4: Performance

We measured the time required to extract attention weights
from the models and the time it takes to prompt the LLM
(GPT-3.5-turbo). We also compared the total time for bug
generation in BUGFARM compared to alternative approaches.
All the experiments were performed on a workstation with
NVIDIA GeForce RTX 3090 GPUs (24GB GDDR6X memory)
and 24 3.50GHz Intel 10920X CPUs (128 GB of memory).
Figure 4 shows the results, where the red dashed line indicates
the mean value. It takes 68, 69, and 86 milliseconds on average
for BUGFARM to extract and analyze attention weights from
CodeBERT, CodeT5, and NATGEN models. Prompting the

CodeBERT CodeT5 NatGen

Attention Analyzer

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

to
ta

l t
im

e
(s

)

BUGFARM

Prompting

7

8

9

10

11

12

LEAM BERT BUGFARM

End-to-End
Mutant Generation

10

20

30

40

50

60

70

Fig. 4: Performance of BUGFARM compared to alternative
approaches in mutant generation

LLM for every method also takes about 9 seconds on average
(Prompting box chart at the middle). The prompting time can be
affected by multiple factors, including the traffic on the model
and prompt size, i.e., the number of tokens in the prompt.

We also measured the total time each technique takes to
generate mutants (unconfirmed bugs) per method (End-to-
End Mutant Generation in Figure 4). Compared to attention
analysis and prompting, the overhead of other sub-components
in BUGFARM, such as parsing and bug selection, is negligible.
Therefore, the average time for generating all the BUGFARM
mutants per each method is 9.29 seconds (mostly dominated
by the prompting time). In comparison, it takes LEAM and
µBERT 35 and 28 seconds on average to generate mutants
per method. This is because these approaches generate more
mutants, as illustrated in Table I under #SCM columns. For
LEAM, this time does not include the training time of the
model, which is 24 hours 9. Also, since µBERT takes a long
time to mutate big classes, we put a timeout of 15 minutes
on it to avoid a long generation time. Automated validation
was also very time-consuming; we spent around 60, 000 CPU
core-hours to validate over 1.9 million mutants from µBERT,
LEAM, and BUGFARM.

Summary. Compared to alternative approaches, BUG-
FARM is an efficient and scalable technique for generat-
ing bugs. More precisely, BUGFARM is 74% and 67%
faster in end-to-end mutants generation than LEAM and
µBERT, respectively.

F. Discussion

BUGFARM aims to generate hard-to-detect and repair bugs
concerning learning-based techniques. Our bugs are not de-
signed to replace real-world bugs but complement them from a
new perspective, i.e., having a very close code representation as
the original code while different in several places. We have no
claim that BUGFARM bugs mimic real-world bugs (because they
do not need to). As a result, comparing with real-world bugs is
out of the scope of this paper. However, BUGFARM leverages
GPT-3.5-turbo for generating bugs, which theoretically have
seen many real-world bugs during training. This can potentially
help BUGFARM bugs be similar to real-world bugs compared
to µBERT, which does not concern such similarity.

9This number is quoted from their paper.

VI. RELATED WORK

Real-world bug/vulnerability benchmarks. Several attempts
have been made to construct real-world bug datasets man-
ually. Defects4J [23], BugSwarm [40], Bugs.jar [34], and
RegMiner [37] are the commonly used Java bug datasets
that have mined GitHub to collect regression bugs from bug-
fixing commits. BigVul [14] and CVEFixes [6] are real-world
examples of vulnerabilities collected from bug-fixing reports
in the CVE/NVD database [8]. BUGFARM complements the
bugs and vulnerabilities in these datasets with hard-to-repair
and hard-to-detect bugs. Also, the bugs in these datasets only
represent human mistakes, which could be potentially different
from the mistakes AI programming tools make.
Learning-based bug/vulnerability generation. Learning-
based bug generation was proposed to overcome the limitations
of manual defect model construction [9]. Such techniques learn
the bug or vulnerability patterns from real-world bug fixes and
generate mutants accordingly. DeepMutation [41] is a technique
that relies on sequence-to-sequence neural machine translation
for learning and generating bugs. SemSeed [31] extracts bug
patterns from real-world bug fixes and injects them into other
programs so that the bug in the new program is syntactically
different but semantically similar. MutationMonkey [5] mines
bug patterns from historical changes and transforms them into
mutation operators semi-automatically. VULGEN [30] combines
pattern mining and deep learning to generate realistic bugs.
LEAM [39] learns to mutate code from large examples of
real-world bug-fixing commits. µBERT [24] produces buggy
versions by replacing code tokens with the spacial <mask>
token, and uses CodeBERT to predict the masked token. Both
LEAM and µBERT incorporate beam search [16] to generate
bugs that involve more than one statement.

BUGFARM is superior to prior learning-based bug-generation
techniques in several ways. First and foremost, BUGFARM
does not involve any training or fine-tuning effort to learn bug
patterns and generate bugs. Consequently, it is independent
of existing real-world bug datasets or a corpus of bug-fixing
commits. Second, while the majority of prior work only gener-
ates one-line bugs, BUGFARM can be configured to generate
bugs that involve multiple statements. Third, BUGFARM is
the first technique that targets the generation of bugs that can
challenge learning-based bug detectors and repair tools, or bugs
that represent the AI programming tools’ mistakes, rather than
human mistakes. Our empirical evaluation confirmed that these
properties result in the generation of bugs that are hard-to-detect
and hard-to-repair.

VII. CONCLUDING REMARKS

Bug benchmarks are essential in software engineering to
evaluate automated techniques concerning bugs. The advent
of learning-based bug-related techniques demands automated
bug-generation techniques for proper evaluation. In this paper,
we presented BUGFARM, a model-in-the-loop technique for the
automated generation of hard-to-detect and repair bugs. Our
empirical evaluation shows the superiority of BUGFARM to
alternative mutant generation approaches in generating unique

and high-quality hard-to-detect and repair bugs. BUGFARM
does not rely on existing bug datasets and is model- and
programming language-agnostic.

REFERENCES

[1] Bigquery dataset. https://console.cloud.google.com/marketplace/details/
github/github-repos, 2023.

[2] Manysstubs4j dataset. https://github.com/mast-group/mineSStuBs, 2023.
[3] O. AI. Open ai chatgpt. https://openai.com/blog/chatgpt, 2023.
[4] A. authors. Anonymous repository. https://github.com/projectinvestigator/

BUGFARM, 2024.
[5] M. Beller, C.-P. Wong, J. Bader, A. Scott, M. Machalica, S. Chandra,

and E. Meijer. What it would take to use mutation testing in industry—a
study at facebook. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP),
pages 268–277. IEEE, 2021.

[6] G. Bhandari, A. Naseer, and L. Moonen. Cvefixes: automated collection
of vulnerabilities and their fixes from open-source software. In
Proceedings of the 17th International Conference on Predictive Models
and Data Analytics in Software Engineering, pages 30–39, 2021.

[7] M. Böhme and A. Roychoudhury. Corebench: Studying complexity of
regression errors. In Proceedings of the 2014 international symposium
on software testing and analysis, pages 105–115, 2014.

[8] H. Booth, D. Rike, and G. A. Witte. The national vulnerability database
(nvd): Overview. 2013.

[9] D. B. Brown, M. Vaughn, B. Liblit, and T. Reps. The care and feeding
of wild-caught mutants. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 511–522, 2017.

[10] BugsInPy. Bugsinpy: Dataset of real-world python bugs. https://github.
com/soarsmu/BugsInPy, 2023.

[11] S. Chakraborty, T. Ahmed, Y. Ding, P. T. Devanbu, and B. Ray. Natgen:
generative pre-training by “naturalizing” source code. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 18–30,
2022.

[12] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque. Pit:
a practical mutation testing tool for java. In Proceedings of the 25th
international symposium on software testing and analysis, pages 449–452,
2016.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[14] J. Fan, Y. Li, S. Wang, and T. N. Nguyen. Ac/c++ code vulnerability
dataset with code changes and cve summaries. In Proceedings of the
17th International Conference on Mining Software Repositories, pages
508–512, 2020.

[15] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, et al. Codebert: A pre-trained model for programming
and natural languages. arXiv preprint arXiv:2002.08155, 2020.

[16] M. Freitag and Y. Al-Onaizan. Beam search strategies for neural machine
translation. arXiv preprint arXiv:1702.01806, 2017.

[17] GitHub. Github copilot. https://github.com/features/copilot, 2023.
[18] Google. Google palm. https://ai.googleblog.com/2022/04/

pathways-language-model-palm-scaling-to.html, 2023.
[19] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt.

Codesearchnet challenge: Evaluating the state of semantic code search.
arXiv preprint arXiv:1909.09436, 2019.

[20] A. R. Ibrahimzada, Y. Varli, D. Tekinoglu, and R. Jabbarvand. Perfect is
the enemy of test oracle. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 70–81, 2022.

[21] Y. Jia and M. Harman. Higher order mutation testing. Information and
Software Technology, 51(10):1379–1393, 2009.

[22] R. Just. The major mutation framework: Efficient and scalable mutation
analysis for java. In Proceedings of the 2014 international symposium
on software testing and analysis, pages 433–436, 2014.

[23] R. Just, D. Jalali, and M. D. Ernst. Defects4j: A database of existing faults
to enable controlled testing studies for java programs. In Proceedings
of the 2014 international symposium on software testing and analysis,
pages 437–440, 2014.

[24] A. Khanfir, R. Degiovanni, M. Papadakis, and Y. L. Traon. Efficient
mutation testing via pre-trained language models. arXiv preprint
arXiv:2301.03543, 2023.

[25] V. I. Levenshtein et al. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, volume 10, pages
707–710. Soviet Union, 1966.

[26] X. Li, S. Zhu, M. d’Amorim, and A. Orso. Enlightened debugging.
In Proceedings of the 40th International Conference on Software
Engineering, pages 82–92, 2018.

[27] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench: Benchmarks
for evaluating bug detection tools. In Workshop on the evaluation of
software defect detection tools, volume 5. Chicago, Illinois, 2005.

[28] Meta. Meta llama. https://ai.facebook.com/blog/
large-language-model-llama-meta-ai/, 2023.

[29] T. Nguyen and E. Wong. In-context example selection with influences.
arXiv preprint arXiv:2302.11042, 2023.

[30] Y. Nong, Y. Ou, M. Pradel, F. Chen, and H. Cai. Efficient mutation
testing via pre-trained language models. 45th IEEE/ACM International
Conference on Software Engineering, 2023.

[31] J. Patra and M. Pradel. Semantic bug seeding: a learning-based approach
for creating realistic bugs. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 906–918, 2021.

[32] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. The Journal of Machine Learning
Research, 21(1):5485–5551, 2020.

[33] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou,
A. Blanco, and S. Ma. Codebleu: a method for automatic evaluation of
code synthesis. arXiv preprint arXiv:2009.10297, 2020.

[34] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad. Bugs. jar:
A large-scale, diverse dataset of real-world java bugs. In Proceedings of
the 15th international conference on mining software repositories, pages
10–13, 2018.

[35] R. K. Samala, H.-P. Chan, L. Hadjiiski, and S. Koneru. Hazards of data
leakage in machine learning: a study on classification of breast cancer
using deep neural networks. In Medical Imaging 2020: Computer-Aided
Diagnosis, volume 11314, pages 279–284. SPIE, 2020.

[36] E. Shi, Y. Wang, H. Zhang, L. Du, S. Han, D. Zhang, and H. Sun. Towards
efficient fine-tuning of pre-trained code models: An experimental study
and beyond. arXiv preprint arXiv:2304.05216, 2023.

[37] X. Song, Y. Lin, S. H. Ng, Y. Wu, X. Peng, J. S. Dong, and H. Mei.
Regminer: towards constructing a large regression dataset from code
evolution history. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 314–326, 2022.

[38] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang,
and T. B. Hashimoto. Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/stanford alpaca, 2023.

[39] Z. Tian, J. Chen, Q. Zhu, J. Yang, and L. Zhang. Learning to construct
better mutation faults. In 37th IEEE/ACM International Conference on
Automated Software Engineering, pages 1–13, 2022.

[40] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C. Liu, P. T.
Devanbu, B. Vasilescu, and C. Rubio-González. Bugswarm: Mining and
continuously growing a dataset of reproducible failures and fixes. In
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 339–349. IEEE, 2019.

[41] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk. Learning how to mutate source code from bug-fixes.
In 2019 IEEE International conference on software maintenance and
evolution (ICSME), pages 301–312. IEEE, 2019.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[43] Y. Wang, W. Wang, S. Joty, and S. C. Hoi. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859, 2021.

[44] C. S. Xia, Y. Ding, and L. Zhang. The plastic surgery hypothesis in the
era of large language models. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 522–534.
IEEE, 2023.

[45] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn. A systematic
evaluation of large language models of code. In Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming,
pages 1–10, 2022.

[46] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. Deep learning for just-
in-time defect prediction. In 2015 IEEE International Conference on
Software Quality, Reliability and Security, pages 17–26. IEEE, 2015.

