
Repository-Level Compositional Code Translation and

Validation

ALI REZA IBRAHIMZADA, University of Illinois Urbana-Champaign, USA
KAIYAO KE, University of Illinois Urbana-Champaign, USA
MRIGANK PAWAGI, Indian Institute of Science, India
MUHAMMAD SALMAN ABID, Cornell University, USA
RANGEET PAN, IBM Research, USA
SAURABH SINHA, IBM Research, USA
REYHANEH JABBARVAND, University of Illinois Urbana-Champaign, USA

Code translation transforms programs from one programming language (PL) to another. One prominent use
case is application modernization to enhance maintainability and reliability. Several rule-based transpilers have
been designed to automate code translation between different pairs of PLs. However, the rules can become
obsolete as the PLs evolve and cannot generalize to other PLs. Recent studies have explored the automation
of code translation using Large Language Models (LLMs). One key observation is that such techniques may
work well for crafted benchmarks but fail to generalize to the scale and complexity of real-world projects
with inter- and intra-class dependencies, custom types, PL-specific features, etc. We propose AlphaTrans, a
neuro-symbolic approach to automate repository-level code translation. AlphaTrans translates both source
and test code, and employs multiple levels of validation to ensure the translation preserves the functionality
of the source program. To break down the problem for LLMs, AlphaTrans leverages program analysis to
decompose the program into fragments and translates them in the reverse call order.

We leveraged AlphaTrans to translate ten real-world open-source projects consisting of ⟨836, 8575, 2719⟩
classes, methods, and tests. AlphaTrans translated the entire repository of these projects consisting of 6899
source code fragments. 99.1% of the translated code fragments are syntactically correct, and AlphaTrans
validates the translations’ runtime behavior and functional correctness for 25.8%. On average, the integrated
translation and validation take 36 hours (min=4, max=122) to translate a project, showing its scalability in
practice. For the syntactically or semantically incorrect translations, AlphaTrans generates a report including
existing translation, stack trace, test errors, or assertion failures. We provided these artifacts to two developers
to fix the translation bugs in four projects. They were able to fix the issues in 20.1 hours on average (5.5 hours
for the smallest and 34 hours for the largest project) and achieve all passing tests. Without AlphaTrans,
translating and validating such big projects could take weeks, if not months.

Additional Key Words and Phrases: Automated Code Translation, Code Translation and Validation, Program
Analysis, Large Language Models

1 Introduction

Application modernization offers numerous benefits to developers, including better performance,
maintainability, productivity, reliability, and security [26, 27, 29, 30]. Manual migration or modern-
ization of real-world projects can be time-consuming and error-prone. Code translation can help
automatically convert programs from one programming language (PL) to another.

Transpilers solely rely on program analysis and perform rule-based translation, failing to translate
code between languages that greatly differ in syntax or semantics [3]. This also makes them very
PL-specific; they cannot generalize to newer features of the same PL pairs easily, let alone other PLs.

Authors’ Contact Information: Ali Reza Ibrahimzada, alirezai@illinois.edu, University of Illinois Urbana-Champaign,
Urbana, Illinois, USA; Kaiyao Ke, kaiyaok2@illinois.edu, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
Mrigank Pawagi, mrigankp@iisc.ac.in, Indian Institute of Science, Bengaluru, Karnataka, India; Muhammad Salman Abid,
ma2422@cornell.edu, Cornell University, Ithaca, NY, USA; Rangeet Pan, rangeet.pan@ibm.com, IBM Research, Yorktown
Heights, NY, USA; Saurabh Sinha, sinhas@us.ibm.com, IBM Research, Yorktown Heights, NY, USA; Reyhaneh Jabbarvand,
reyhaneh@illinois.edu, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.

2 Ibrahimzada et al.

Finally, the translations lack readability, requiring much effort to understand and validate them, and
naturalness, failing to create idiomatic code in the target PL [42]. State-of-the-art code translation
techniques attempt to harvest the emerging abilities of the Large Language Model (LLM) in code
synthesis to overcome the limitations of transpilers [39, 42, 60]. However, these techniques are
still limited to translating simple programs in crafted benchmarks or selected slices of real-world
projects due to the following challenges:
(1) Problem complexity. The source and target PLs can be fundamentally different in programming

paradigms, typing, and memory management. Some PLs have specific properties that may not
exist in others, e.g., constructor overloading in Java. Such complexities are beyond the abilities
of existing LLMs to handle, causing them to hallucinate when translating types, code constructs,
or even method names [42], making translations non-compilable or useless.

(2) Validation. The translation should preserve the functionality of the source project. Most existing
techniques follow a “translation first and validation next” approach, which can postpone the
validation and not benefit from the potential use of validation as feedback to correct the
translation [42]. A few techniques use formal methods [39, 60] to verify translations on the
go. However, these techniques cannot scale to real-world projects. One possible solution for
validation is reusing the tests in the source language. However, due to (1) multiple invocations
of different methods in unit tests and (2) inherent long call chains in real-world projects, testing
a translated method in isolation is impossible.

(3) Limited context window. Concerning repository-level translation, the entire project and, in many
cases, even the entire class cannot fit into the context window of current LLMs [23]. Even
assuming an unlimited context window, LLMs are shown to have a short attention span [35],
preventing them from properly capturing the intra- and inter-procedural dependencies in
real-world projects.

This paper presents AlphaTrans, a neuro-symbolic1 approach for automated repository-level
code translation and validation.AlphaTrans leverages static analysis to resolve PL-specific features
of the source language (§4.1), decompose the source project into smaller fragments (§4.2), and
create a compilable project skeleton in the target language (§5). It then starts translating fragments
in the reverse call order and validates them using existing tests when possible (§6). After translating
each fragment, AlphaTrans updates the project skeleton and ensures the whole project compiles,
gradually translating and validating the source project into the target PL. To improve translation
quality, static analysis again comes to the rescue: AlphaTrans collects relevant context to each
fragment, including translated callee methods and surrounding contexts, e.g., class declaration,
global variables/fields, etc. It also uses relevant in-context examples based on the specific properties
of the fragment to be translated. The current version of AlphaTrans implements two levels of
dynamic validation: (1) running the source tests on the translated fragment in isolation using
language interoperability (§6.1) and (2) decomposing, translating, and executing the unit tests on
the translated project (§6.3). Finally, AlphaTrans recomposes the translated fragments to create
the program in the target PL (§6.2).
The idea of compositional translation and validation proposed by us is PL-agnostic; however,

implementing the program transformation component is PL-specific. For the first version of Al-
phaTrans, the implementation supports translating from Java to Python. Our motivations for
choosing this PL pair are: (1) Java offers many features that are not supported or common in other
PLs by default (e.g., method/constructor overloading, complex types, circular dependencies, local
or anonymous inner classes, interfaces, etc.); (2) Python programs are not compiled but interpreted,

1The keyword symbolic here refers to a general term of symbolic learning in contrast to machine learning and should not
be confused with symbolic execution. We refer to combining LLMs and program analysis as a neuro-symbolic approach.

Repository-Level Compositional Code Translation and Validation 3

Transformation and decomposition Test decomposition Translation validation
public class ArgExp extends Exception {
 private Option option;
 public ArgExp(Option option) {
 this(option.getKey());
 this.option = option;}
 public ArgExp(String msg) {
 super(msg);}
 public String getMsg() {...}
 public int getNumArgs() {...}
 public int getLen() {...}
 public void createMsg() {
 ...;
 getMsg(); getNumArgs();...;}
}

29 tokens

16 tokens
11438 tokens
2390 tokens
5056 tokens

6893 tokens

0
1
2
3
4
5
6
7
8
9
10
11
12
13

25380
 tokens

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

public class ArgExp extends Exception {
private Option option;
public static ArgExp ArgExp1(int id,
 Option opt, String msg) {
 if (id == 1)
 return new ArgExp(id, opt, opt.getKey());
 return new ArgExp(id, opt, msg);}
public ArgExp(int id, Option opt, String msg) {
 super(msg);
 if (id == 1)
 this.option = opt;}
public String getMsg() {...}
public int getNumArgs() {...}
public int getLen() {...}
public void createMsg() {...; getMsg();
 getNumArgs();...;}
}

a public class TestArgExp {
 public void test01() {
 ArgExp obj = new ArgExp(0, null, "message");
 int num = obj.getNumArgs();
 assertEqual(num, obj.getLen());
 obj.createMsg();
 assertEqual("exp", obj.getMsg());
 }
}

0
1
2
3
4
5
6
7
8
9
10
11
12
13

c e

b d f
public class TestArgExp {
 public void test01_0_decomposed() {
 ArgExp obj = new ArgExp(0, null, "message");}
 public void test01_1_decomposed() {
 ArgExp obj = new ArgExp(0, null, "message");
 int num = obj.getNumArgs();}
public void test01_2_decomposed() {
 ArgExp obj = new ArgExp(0, null, "message");
 int num = obj.getNumArgs();
 assertEqual(num, obj.getLen());}
public void test01_3_decomposed() {
 ArgExp obj = new ArgExp(0, null, "message");
 int num = obj.getNumArgs();
 assertEqual(num, obj.getLen());
 obj.createMsg();}
public void test01_4_decomposed() {
// original test01 body}}

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

class TestArgExp(unittest.TestCase):
 def test01_0_decomposed(self):
 …
 def test01_1_decomposed(self):
 …
 def test01_2_decomposed(self):
 …
 def test01_3_decomposed(self):
 …
 def test01_4_decomposed(self):
 …

fail

pass
0
1
2
3
4
5
6
7
8
9
10
11
12
13

test01
ArgExp

getNumArgs

getLen

createMsg

public class ArgExp extends Exception {
 private Option option;
 public static ArgExp ArgExp1()
 public ArgExp()
 public String getMsg()
 public int getNumArgs()
 public int getLen()
 public void createMsg()}

def __init__(...):
super.__init__(msg)
if id == 1:
self.option = opt

Original code

Transformed code Isolation

Execution trace

Original test

Decomposed test

Test execution

pass
pass

Fig. 1. Illustration of key challenges in repository-level code translation and AlphaTrans addressing them.

which makes many translation issues that can be caught at the compile time stay there until test
execution and challenge the validation; and (3) both PLs are popular (top-5 on the TIOBE index [54]).
Using AlphaTrans to translate ten real-world Java projects to Python corroborates its effec-

tiveness (translating 6, 899 code fragments, with 99.1% syntactically correct translations and 25.8%
validated translations), scalability (completing translations in 36 hours, on average), and prac-
ticality (human subjects were able to fix the issues in AlphaTrans translations and achieve a
green test suite within 20.1 hours, on average). It is worth noting that these results were achieved
using an open-access LLM (DeepSeek-Coder-33b-Instruct [22]) with a moderate size, and using
bigger/stronger models such as GPT-4 [40] or Claude-3 [2] will improve the results.

To the best of our knowledge, AlphaTrans is the first technique to translate an entire repository,
including tests, and generates validated translations (considering existing tests). Compared to
the only repository-level translation attempt using GPT-4 [42] (translating Apache Commons
CLI from Java to Python) that resulted in non-compilable code, let alone the translation being
validated, AlphaTrans translated the entire repository, producing 99% syntactically correct and
70.7% functionally validated code. The effort by human subjects in fixing the translation bugs by
AlphaTrans and achieving green tests creates pragmatic bug datasets for testing, bug localization,
and program repair research. We want to show the artifacts we generate can be used by other
people. Our code and artifacts are publicly available [31].

2 Challenges in Repository-Level Code Translation

To illustrate the most notable challenges in repository-level code translation and validation, we use
the hypothetical example in Figure 1, inspired by the complexities in real-world Java projects.

Challenge 1: Class Size. The class consists of 25, 380 tokens (a). Instructions for translating the
code, in-context examples, and the model’s response can also significantly increase the number of
input tokens. While some commercial LLMs support tens of thousands of tokens, many open-access
LLMs do not. For example, DeepSeek-Coder-33b-Instruct [22] used in this paper has a context
window of 16, 384 tokens, of which only 4, 096 tokens can be used for generation. To address this
challenge, AlphaTrans decomposes Java application classes into smaller field or method fragments
and translates each separately in a reverse call order (§4.2.1, §4.2.2).
Challenge 2: PL-specific Properties. Java programs frequently use method and constructor

overloading, which are not supported by default in Python (a). This example shows instances of
constructor overloading (lines 2 and 5). In Python, declaring two constructors is allowed, however

4 Ibrahimzada et al.

at runtime, the last declaration always overrides all previous constructors, which can result in
unexpected behavior. To address this issue, AlphaTrans employs program analysis to refactor
the original code while preserving the functionality (through test execution). The transformation
includes changing the constructor’s name, updating the references, and, in many cases, changing
the constructor’s implementation. The transformed code (b) makes the source program amenable
to translation to Python.
Challenge 3: Validation. To illustrate the challenges with validation, consider test01 (c)

that invokes four methods in its body (ArgExp, getNumArgs, getLen, and createMsg) to test the
functionality of method getMsg in the assert statement. Suppose we can successfully translate
all methods except createMsg. If we choose test translation, the most natural way of validating
code translation, the execution of the translated test results in a runtime error when invoking
createMsg. As a result, a translation issue in one method casts a shadow in validating the translation
of the other methods. We refer to this issue as the test translation coupling effect. To overcome this
challenge, AlphaTrans executes source language tests as-is (i.e., without translation) by leveraging
a language-interoperability framework called GraalVM [41] (f). In this setting, a test in the source
language is executed every time one of its invoked application methods (method fragments) is
translated. This approach validates functional equivalence of each method in isolation since other
methods invoked in the test or the body of the translated method can remain in the source language.

Challenge 4: Test Translation. GraalVM has certain limitations (§6.1), which prevents Alpha-
Trans from validating all the code fragments in isolation. Furthermore, we need to translate tests
regardless of whether they are used for validation to maintain the translated projects in the target
language. Test errors as a result of test translation coupling effect under-approximates the quality of
translation: failing to validate the translation of four methods because of one incorrect translation.
Root causing the translation bugs also requires additional efforts from developers, i.e., looking at
the stack trace and coverage. To overcome this challenge, AlphaTrans decomposes the original
test suite into test fragments (d). Executing the translated decomposed test suite results in three
test passes (e), validating the runtime behavior of three methods that the original test suite could
not promptly provide.
An alternative approach is parsing the stack trace and code coverage results for each runtime

error during translation. However, test decomposition is a cleaner way to see the results per test
execution promptly. It is also done once before translation. In translation to interpreted languages
such as Python, specifically, the execution of test fragments can validate the runtime behavior of
methods before waiting for functional validation. For fragments that GraalVM cannot validate,
if AlphaTrans can successfully translate all the methods invoked during test execution and test
passes, such test will also be used for validating functional correctness.

3 Overview of Approach

AlphaTrans consists of three main phases, shown in Figure 2: program transformation and
decomposition (§4), type translation and skeleton construction (§5), and compositional translation
and validation (§6). The first two phases aim to decompose and simplify the repository-level code
translation problem for LLMs, helping the third phase yield high-quality validated translations.

The program transformation and decomposition phase first refactors the PL-specific properties
of the source program into programming paradigms common among many PLs (§4.1). Next, it
decomposes the source project into smaller units, i.e., fragments, and stores fragment dependencies
in a data structure called schema (§4.2).
The type translation and skeleton construction phase takes the schema as input and produces

target project skeleton, i.e., a compilable project in the target language with method signatures but
no method implementation (§5.2). The first translation step is also performed by this phase, where

Repository-Level Compositional Code Translation and Validation 5
Co

m
po

si
tio

na
l t

ra
ns

la
tio

n
an

d
va

lid
at

io
n

Pr
og

ra
m

 tr
an

sf
or

m
at

io
n

an
d

de
co

m
po

si
tio

n

Java
project

Program transformation

Classes Fields Methods

AST
Refactoring

Test decomposition

Original
test

Decomposed tests

Source decomposition

"class X":
 "methods":
 "name": "method Y",
 ...
 "fields":
 "name": "field A",
 ...

Ja
va

 ty
pe

s
Py

th
on

 ty
pe

s

LLM

String int double
List Map short

str int float
List Dict int

Type translation and Skeleton construction

class ArgExp(Exception):
 __option: Option = None
 @staticmethod
 def ArgExp1(id: int, opt:

Option, msg: str)->ArgExp:
 pass
 def __init__(self, id:int,
 opt:Option,msg:str):
 pass
 def getMsg(self) -> str:
 pass
...

Skeleton

Skeleton validation

{ }

Translated
project

Execution
report

Code traversalCode translation and validation

Call graph

Reverse
traversal

bottom-up

translate
from $SRC to $TRG
language.

$SRC_DEPENDENCIES
$SRC_SKELETON
$SRC_CODE

Syntax
validation

LLM

Prompting
Isolation
validation

Test
selection

Test translation

t1.java

t3.java

t2.java

t1.java

t2.java

t1.py t2.py

schema

U
ni

ve
rs

al
 T

yp
e

M
ap

Fig. 2. Overview of AlphaTrans.

it translates the source PL types to the target PL to ensure that class skeletons are compilable
(§5.1). The outcome of type translation is a type mapping from the source to the target PL, which
AlphaTrans can reuse in translating other projects.

The compositional translation and validation phase takes schema and project skeleton as inputs
and translates fragments, in the reverse call order, from the source to the target PL by prompting
an LLM. After translating a fragment, this phase updates the class skeleton with its translation
and checks whether the skeleton is still compilable. For method fragments, AlphaTrans looks
for corresponding tests and, if any exist, validates them. The first level of validation is performed
through GraalVM’s language-interoperability capability to isolate the validation of the method
using tests in the source language. In the second level, AlphaTrans translates and executes the
corresponding tests. In case of compilation errors or test failures, AlphaTrans re-prompts the
LLM with feedback (from the compilation and runtime errors) to improve the translation. If no
improvement is achieved within a certain budget, AlphaTrans continues to the next fragment until
all are translated. For methods whose translations are not compilable or result in test errors/failures,
AlphaTrans generates reports consisting of existing translations and relevant artifacts, such as
stack traces, test errors, assertion failures, and test coverage information.
4 Program Transformation and Decomposition

4.1 Program Transformation

Algorithm 1: Constructor Overloading
Inputs: Overloaded Constructors𝑂𝐶𝑠

Output: Code without Overloaded Constructors 𝑁𝑂𝐶𝑠

1 if !ℎ𝑎𝑠𝑇ℎ𝑖𝑠𝐶𝑎𝑙𝑙 (𝑂𝐶𝑠) then
2 ids← 𝑐𝑟𝑒𝑎𝑡𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝐼𝐷𝑆 (𝑂𝐶𝑠) ;
3 NOCs←𝑚𝑒𝑟𝑔𝑒 (𝑂𝐶𝑠, 𝑖𝑑𝑠) ;
4 else
5 if ℎ𝑎𝑠𝑂𝑛𝑙𝑦𝑇ℎ𝑖𝑠𝐶𝑎𝑙𝑙 (𝑂𝐶𝑠) then
6 refactor ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑓 𝑎𝑐𝑡𝑜𝑟𝑀𝑒𝑡ℎ𝑜𝑑 (𝑂𝐶𝑠) ;
7 NOCs←𝑚𝑒𝑟𝑔𝑒 (𝑂𝐶𝑠, 𝑟𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟) ;
8 else
9 refactor ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑓 𝑎𝑐𝑡𝑜𝑟𝑀𝑒𝑡ℎ𝑜𝑑 (𝑂𝐶𝑠) ;

10 ids← 𝑐𝑟𝑒𝑎𝑡𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝐼𝐷𝑆 (𝑂𝐶𝑠) ;
11 NOCs←𝑚𝑒𝑟𝑔𝑒 (𝑂𝐶𝑠, 𝑟𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟, 𝑖𝑑𝑠) ;

12 𝑟𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟𝐶𝑎𝑙𝑙𝑆𝑖𝑡𝑒𝑠 () ;
13 return NOCs;

This component performs semantics-preserving
refactoring of method and constructor over-
loading in Java code to make it amenable
to translation to Python. Other Java-specific
features, namely, circular dependencies, inner
classes, interfaces, and abstract classes, will be
handled when constructing the project skele-
ton in Python (§5.2). The reason for resolv-
ing method and constructor overloading in the
source language is that we have to change the
implementation, i.e., call sites to methods and
constructors. Therefore, such changes should
be validated using source tests.

For overloadedmethods,AlphaTransmakes
each method name unique by adding an integer suffix (starting at 0) to the name and updates all call

6 Ibrahimzada et al.

public ArgExp(Option opt) {
 this(opt.getKey());
 this.option = opt;
}
public ArgExp(String msg) {
 super(msg);
}

1
2
3
4
5
6
7 Original code

public ArgExp(Option opt) {
 this(opt.getKey());
}

public ArgExp(String msg) {
 super(msg);
}

1
2
3
4
5
6
7

public ArgExp(Option opt) {
 this.option = opt;
 this.threshold = 1;
}
public ArgExp(String msg) {
 this.msg = msg;
}

1
2
3
4
5
6
7

public static ArgExp ArgExp1(
 int id, Option opt, String msg){
 if (id == 1)
 return new ArgExp(id, opt, opt.getKey());
 return new ArgExp(id, opt, msg);}
public ArgExp(int id, Option opt, String msg){
 super(msg);
 if (id == 1)
 this.option = opt;}

1
2
3
4
5
6
7
8
9

public static ArgExp ArgExp1(Option opt) {
 return new ArgExp(opt.getKey());
}

public ArgExp(String msg) {
 super(msg);
}

1
2
3
4
5
6
7
8
9

public ArgExp(int id, Option opt, String msg){
 if (id == 0)
{
 this.option = opt;
 this.threshold = 1;
}
 else {
 this.msg = msg
}

1
2
3
4
5
6
7
8
9

(c)(b)(a)

Original codeOriginal code

Transformed codeTransformed codeTransformed code

Fig. 3. Constructor overloading patterns and their corresponding transformations.

sites based on the new method names. Resolving overloaded constructors is not as straightforward,
as they should have the same name as the enclosed declaring class. Furthermore, the invocation of
constructors inside each other and the Java inheritance mechanism makes constructor overloading
complex. Our algorithm (Algorithm 1) for resolving the constructor overloading handles three
prominent2 use cases shown in Figure 3.
The first pattern (Figure 3-a) shows multiple independent constructors. AlphaTrans merges

these constructors into one and uses an id parameter to differentiate between them. All the call sites
of the constructors will be updated accordingly, based on the given id. The second use case (Figure 3-
b) is more challenging to resolve, as one constructor calls the other using this(). AlphaTrans
transforms the first constructor into a factory method and invokes the second constructor inside
it. Factory methods are static, and AlphaTrans updates the call sites by directly invoking them
on the class instance, e.g., ArgExp.ArgExp1(id,opt,msg). The last use case (Figure 3-c) is similar to
the second, except that both constructors implement some code. AlphaTrans refactors the first
constructor into a factory method and adds an extra id parameter to differentiate between behaviors
implemented by different constructors. The call sites of the constructors will be updated like in
previous cases. Real-world projects often combine these patterns, which AlphaTrans handles
using Algorithm 1.

4.2 Program Decomposition

Translating the entire repository of real-world projects is a very complex problem. As a result,
AlphaTrans breaks down projects into fragments, performs the translation and validation at the
fragment level, and re-composes the translation as a repository in the target language.

4.2.1 Source Decomposition. Real-world projects can include hundreds of files with thousands of
lines of code, which exceed the context window of state-of-the-art LLMs. AlphaTrans employs
static analysis to decompose code into smaller fragments, i.e., field fragments and method fragments.
A field fragment includes modifiers, type, name, and field value. A field fragment can belong to an
application or test class. A method fragment includes the full signature of an individual method
in the source language. A method fragment can be an application or test method (e.g., helper
methods or unit tests). During decomposition, AlphaTrans extracts meta-information related to
the fragments, such as their location in code (e.g., start and end line), code (e.g., implementation
between start and end line), dependencies (e.g., callers and callees), types (of inputs and output), and
other necessary information such as file paths, class inheritance, imports, and method annotations.
AlphaTrans stores fragments and their corresponding collected meta-data in a data structure
called schema, which components in other phases will use. AlphaTrans also extracts the call graph
to guide the translation, i.e., translate fragments in reverse call order.
2Following the best practices for constructor overloading from Stack Overflow and analyzing the use of constructor
overloading in open-source projects, we categorized the use cases into the mentioned rules.

Repository-Level Compositional Code Translation and Validation 7

4.2.2 Test Decomposition. The burden of validating functional equivalence in AlphaTrans is on
GraalVM. Yet, we still need to translate and execute tests to validate the fragments that GraalVM
cannot be used to validate (§6.1). Unit tests in real-world projects can invoke multiple methods
and include multiple assert statements. Furthermore, long call chains are inevitable in real-world
projects due to the high degree of intra- and iter-procedural dependencies. As we show later (§7.4),
the average number of direct method invocations and method executions in tests for our studies
subjects are 3 and 27, respectively. This can result in test translation coupling effect discussed in §2.
To enable test translation for validating runtime validation or functional equivalence, Alpha-

Trans decomposes each unit test into a series of test fragments, as shown in Figure 1-d. It uses
each statement with a call to an application method as a cutting point. For statements enclosed by
branches, loops, of exception-handling blocks, AlphaTrans includes the entire block. This process
generates an ordering of executable test fragments for each unit test. Each test fragment includes
all the statements of the lower-order fragments, along with additional statements that invoke only
one method that was not invoked by previous fragments. AlphaTrans executes test fragments in
increasing order until a test fails and skips running following fragments, as they will also fail.

5 Type Translation and Skeleton Construction

5.1 Type Translation

class ArgExp(Exception):
__option: Option = None

 @staticmethod
 def ArgExp1(id: int, opt: Option, \
 msg: str) -> ArgExp:

 pass
 def __init__(self, id: int, opt: \
 Option, msg: str):

 pass
 def getMsg(self) -> str:

 pass
 def getNumArgs(self) -> int:
 pass
def getLen(self) -> int:

 pass
def createMsg(self) -> None:
 pass

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Fig. 4. Target PL skeleton for example in

Figure 1-b.

Automatically resolving types is a challenging problem [21,
53], and a large body of work has attempted to address
this, mostly using symbolic rule-based approaches [5, 8,
9, 32, 46, 47]. AlphaTrans employs a Retrieval-Augment
Generation (RAG) [34] technique for finding the equivalent
types in target language. To that end, it first extracts all the
types in the source language of a given project. Custom,
application-level types will be resolved during the trans-
lation as AlphaTrans translates fragments and classes
in the target language. For the remaining types, it crawls
the online API documentation for the source language and
retrieves the relevant description of each type.
To form the prompt,3 AlphaTrans uses the retrieved

description and instructs the model with an in-context example to return the most relevant type in
the target language, given the use of types in the source language and the retrieved description. To
account for potential hallucination in LLM’s response, i.e., returning a type that does not exist in
Python, AlphaTrans employs a simple Python script, uses the translated type as an annotation,
executes the script, and keeps those without any syntactic or runtime issue. The types in the source
language and their corresponding in the target language form a data structure called Universal
Type Mapping. In practice, AlphaTrans reuses or augments the mapping when translating new
projects.

5.2 Skeleton Construction

AlphaTrans builds the project’s structure in the target language before translation. This step is
necessary for compositional translation and validation, as AlphaTrans can insert the translated
fragments into the project, compile it, or even execute the existing translated test suites, gradually
completing the translation. At this step, AlphaTrans also resolves Java-specific features in Python
before starting the translation. Specifically, it resolves circular imports and dependencies, inner

3Due to space limit, we could not include the prompt. Please refer to the artifacts to see the prompts used for type resolution.

8 Ibrahimzada et al.

classes, interfaces, and abstract classes. Figure 4 shows the class skeleton corresponding to the
illustrative example of Figure 1-b.

At the first step, AlphaTrans creates classes corresponding to each application class in Java. The
fields for Python classes are set to None, and AlphaTrans uses the information in schema (§4.2.1)
to ensure the naming corresponds to the type of their access modifier in the source language. In the
example of Figure 4, the translation of field private Option option; in Java is __option: Option =

None. The classes also include method signatures, with their body set to pass. AlphaTrans uses the
universal type mapping (§5.1) to use relevant types in the full method signature. Once the initial
skeleton is created, AlphaTrans leverages the extracted call graph during program decomposition
to detect circular dependencies. If there exist any, AlphaTrans resolves them with local imports.
For inner classes, AlphaTrans unfolds them in Python and uses dot notation to access certain
methods and fields (e.g., Class.methodName). Finally, AlphaTrans implements best practices in
Python and sub-classes all abstract classes and interfaces from abc.ABC class. ABC is a class from
the abc module in Python standard library, which is used for defining abstract base classes.

6 Compositional Translation and Validation

In this section, we discussAlphaTransmain algorithm for compositional translation and validation.
AlphaTrans translates fragments in the reverse call order. For each fragment, it employs the logic
demonstrated by Algorithm 2. The algorithm takes a fragment 𝐹 , LLM𝑀 , and a series of parameters
as inputs, translates the fragment, and returns translation outcomes: (1) syntax check (“non-
parseable”, “parseable”), (2) functional equivalence check (“graal-fail”, “graal-success”, “graal-error"),
and (3) translated test execution check (“not-exercised”, “test-fail”, “test-success").

AlphaTrans employs iterative and feedback-based prompting. That is, if one of the mentioned
checks fails, e.g., the translated fragment is not syntactically correct, it prompts themodel for another
translation attempt. To control the number of iterations, AlphaTrans considers a reprompting bud-
get, i.e., repromptBudget. The algorithm takes the minimum (𝑚𝑖𝑛𝑏𝑢𝑑𝑔𝑒𝑡) and maximum (𝑚𝑎𝑥𝑏𝑢𝑑𝑔𝑒𝑡)
values for the budget and dynamically sets reprompting budget to a number between them based
on the coverage information, e.g., the budget is close to𝑚𝑎𝑥𝑏𝑢𝑑𝑔𝑒𝑡 for a fragment if it is exercised
multiple times (high hit rate based on coverage information) by different unit tests. The rationale
is to give more importance to fragments covered by more tests to eventually increase translation
validation success. The main translation and validation loop (lines 3–31) runs until the assigned
budget is exhausted.

Inside the loop,AlphaTrans first crafts a unique prompt based on the template shown in Figure 5
and then instructs the LLM to translate the fragment (lines 4–5). It then validates the generated
translation in multiple steps. The first step checks for syntactical correctness and assigns proper
labels to𝑇𝑉𝑂 (lines 6–10). Then, AlphaTrans leverages GraalVM for isolation-based validation of
fragment 𝐹 (lines 12–20), if there exists a test in the source language covering the fragment during
its execution. Finally, it translates and executes decomposed fragment tests: if there are no eligible
tests (a test becomes eligible if all its dependencies are translated) for the fragment, AlphaTrans
simply assigns the “not-exercised” label to the fragment and moves on to the next one (lines 21–23).
Otherwise, it translates the tests, executes them to validate the fragment, and assigns test outcome
labels in TVO (lines 24–31). In case of a test failure, AlphaTrans extracts all involved fragments
and re-prompts them with feedback extracted from test execution.
Due to inherent intra- and inter-procedural dependencies in real-world projects, the number

of fragments involved in re-prompting could be high, logarithmically increasing the translation
time. AlphaTrans filters out those with GraalVM label “graal-success”, ranks the remaining based
on suspiciousness score, and re-prompts 𝑡𝑜𝑝𝐾 suspicious fragments. The suspiciousness score for

Repository-Level Compositional Code Translation and Validation 9

fragments is calculated such that a fragment with more failing tests will get a higher score and,
therefore, ranked higher among other fragments.

Algorithm 2: Compositional Translation and
Validation
Inputs: Fragment 𝐹 , Model𝑀 ,𝑚𝑖𝑛𝑏𝑢𝑑𝑔𝑒𝑡 ,𝑚𝑎𝑥𝑏𝑢𝑑𝑔𝑒𝑡 , and

𝑡𝑜𝑝𝑘 suspicious methods
Output: Translation and Validation Outcome𝑇𝑉𝑂

1 feedback ← ∅; TVO ← {};
2 repromptBudget ←

𝑔𝑒𝑡𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐵𝑢𝑑𝑔𝑒𝑡 (𝐹,𝑚𝑖𝑛𝑏𝑢𝑑𝑔𝑒𝑡 ,𝑚𝑎𝑥𝑏𝑢𝑑𝑔𝑒𝑡) ;
3 while repromptBudget > 0 do
4 prompt ← generatePrompt (F, feedback) ;
5 translation← translateFragment (prompt,M) ;
6 if !𝑠𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐𝐶ℎ𝑒𝑐𝑘 (𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) then
7 TVO[”syntax_outcome”] ← ”𝑛𝑜𝑛 − 𝑝𝑎𝑟𝑠𝑒𝑎𝑏𝑙𝑒”;
8 feedback ← getFeedback (translation) ;
9 repromptBudget ← repromptBudget − 1;

10 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;

11 TVO[”syntax_outcome”] ← ”𝑝𝑎𝑟𝑠𝑒𝑎𝑏𝑙𝑒”;
12 if !𝑔𝑟𝑎𝑎𝑙𝐶ℎ𝑒𝑐𝑘 (𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) then
13 TVO[”graal_outcome”] ← ”𝑔𝑟𝑎𝑎𝑙 − 𝑓 𝑎𝑖𝑙”;
14 feedback ← getFeedback (translation) ;
15 repromptBudget ← repromptBudget − 1;
16 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;

17 else if 𝑔𝑟𝑎𝑎𝑙𝐿𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) then
18 TVO[”graal_outcome”] ← ”𝑔𝑟𝑎𝑎𝑙 − 𝑒𝑟𝑟𝑜𝑟 ”;
19 else
20 TVO[”graal_outcome”] ← ”𝑔𝑟𝑎𝑎𝑙 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑠”;
21 if !ℎ𝑎𝑠𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑇𝑒𝑠𝑡𝑠 (𝐹) then
22 TVO[”test_outcome”] ← ”𝑛𝑜𝑡 − 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒𝑑”;
23 𝑏𝑟𝑒𝑎𝑘 ;

24 𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 ← getTestTranslation(F) ;
25 if !𝑡𝑒𝑠𝑡𝐶ℎ𝑒𝑐𝑘 (𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) then
26 TVO[”test_outcome”] ← ”𝑡𝑒𝑠𝑡 − 𝑓 𝑎𝑖𝑙”;
27 repromptSuspiciousMethods (testTranslation, topK) ;

28 repromptBudget ← repromptBudget − 1;
29 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;

30 TVO[”test_outcome”] ← ”𝑡𝑒𝑠𝑡 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑠”;
31 𝑏𝑟𝑒𝑎𝑘 ;

32 return TVO;

Our prompt template consists of five distinct
parts as shown in Figure 5. The first part is the
persona message used by DeepSeek-Coder-33b-
Instruct during instruction fine-tuning and is
required for producing the best outputs. The
next part introduces the In-Context Learning
(ICL) example, which reflects the complexities
of code translation and instructs LLM on how
to deal with them. The green part indicates the
natural language instruction given to themodel.
After describing the objective, the prompt em-
beds the source Java code along with partial
translation as a skeleton, which includes all de-
pendencies and translations of the fragments
invoked by the current one. The prompt con-
cludes with ### Response: special keyword to
guide the model for code generation.

6.1 Language Interoperability

GraalVM [41, 58] is a Java Development Kit by
Oracle. It offers the Polyglot API [20], which
allows the integration of programs written in
different guest languages within a Java-based
host application. In the context of this pa-
per, GraalVM allows developers to execute
Python code from Java and vice versa. Alpha-
Trans leverages the Polyglot API to perform
in-isolation validation of the fragments by re-
placing the Java implementation of a method
with its translated Python version while keep-
ing the rest of the project in Java. It then exe-
cutes the Java tests covering the fragment to
validate the functional equivalence of the trans-
lation.

The Polyglot API allows access to Python data objects from Java and vice-versa, as these objects
reside in a shared memory space. However, objects must be cast to appropriate types for passing
parameters to and processing returned values from polyglot calls. The Polyglot API can perform
this casting implicitly for only a few simple data types. AlphaTrans builds on top of the Polyglot
API to provide a framework to create a Python program state that is isomorphic to the Java program
state. The Python translation is restricted to this isomorphic state, and the states are synchronized
after method calls to preserve the isomorphism. AlphaTrans allows for the casting of user-defined
types as well as several built-in and library types. Using both the static and the dynamic type
information of Java objects, AlphaTrans can disambiguate the target types when casting Python
objects to Java types. It further preserves object identities and aliasing during such casting, and can
also propagate exceptions across language boundaries.

10 Ibrahimzada et al.

You are an AI programming assistant, utilizing the
DeepSeek Coder model, developed by DeepSeek Company

Persona

Java Code: $ICL_JAVA_CODE
Partial Python Translation: $ICL_SKELETON
Python Translation: $ICL_PYTHON_TRANSLATION

ICL

Instruction:
Translate the following Java method to Python 3.10
like the example above.

Instruction

Java Code: $SRC_JAVA_CODE
Partial Python Translation: $CONSTRUCTED_SKELETON

Partial
Translation

Response:
Python Translation:

Response

Fig. 5. Prompt structure utilized in AlphaTrans.

To validate the translation of a method𝑚 in iso-
lation, AlphaTrans creates an instrumented ver-
sion of the Java source code. We will refer to this
instrumented Java project as the primal project, 𝑃𝑚 .
During instrumentation, AlphaTrans replaces
the original Java implementation,𝑚 𝐽 of𝑚 with
a polyglot call to its Python implementation,𝑚𝑃 .
𝑚𝑃 resides inside a Python project, which we will
refer to as the dual project, 𝐷𝑚 . The structure of
𝐷𝑚 is similar to that of the original Java project.
All other methods in 𝐷𝑚 wrap a call to the cor-
responding methods in 𝑃𝑚 . Doing so provides an
interface for𝑚𝑃 to execute with access to all other
methods and fields, although these are defined
only in 𝑃𝑚 . Using the call graph for the Java project, AlphaTrans determines all test methods that
invoke𝑚 and executes them in 𝑃𝑚 to validate the translation𝑚𝑃 .
This in-isolation validation approach is limited in the sense that it can handle only a limited

number of built-in and library types. In certain cases, like reference cycles involving maps or objects
with impure methods for hashing, the isomorphism between Java and Python states may not be
maintained. Furthermore, it may sometimes not be possible to disambiguate target types when
casting Python objects to Java types, for example, if the target object has type List<Object>.

6.2 Target Program Recomposition

AlphaTrans updates project skeletons after each fragment translation, gradually constructing
the project in target PL. Specifically, it combines class skeletons with the body of the translated
fragment and creates stand-alone Python files. The recomposed Python files are then used for
dynamic validation.

6.3 Test Translation

Similar to translating application method fragments, AlphaTrans also translates test fragments.
Using the dependency information captured during static analysis, it crafts prompts for unit tests
along with their dependencies for the model to translate. The ICL examples used for prompting
test fragments differ from prompts used for translating application method fragments. The focus
of ICL examples here is to prevent LLM from hallucinating the usage of assert statements in the
source to target PL. To construct ICL examples for test fragment translation, we created a pool
of in-context examples, where each example shows the Python assert statements equivalent to
Java assert statements in the context of a test. When prompting a test fragment, the AlphaTrans
detects the assert statement in the fragment and retrieves the corresponding examples from the
pool. For translated tests, only syntactic validation is performed as there is no other means of
validating their translations.

7 Evaluation

To evaluate different aspects of AlphaTrans, we investigate the following research questions:

RQ1: Effectiveness. To what extent AlphaTrans can automatically resolve types from source to
target PL? Can AlphaTrans effectively translate real-world projects?

Repository-Level Compositional Code Translation and Validation 11

RQ2: Translation Bugs and Fixes. How much effort do developers spend completing the partial
translations created by AlphaTrans and achieving all passing tests? What is the nature of
translation bugs?

RQ3: Impact of Test Decomposition. To what extent does test decomposition impact the validation
results?

RQ4: Impact of Test Coverage. To what extent does a test suite with higher coverage impact the
validation results?

7.1 Experiment Setup

We followed three steps for selecting subjects:
1- Mining.We mined GitHub and retrieved a list of repositories that use Java as the primary

language, are self-contained (include build files, etc.), and have more than 30 stars with at least one
commit pushed within the last 12 months.
2- Filtering. We filtered out projects based on the number of call edges in their call graphs:

removed those with less than 2, 000 call edges to ensure the subject projects are big enough to
challenge AlphaTrans. We also removed those with more than 30, 000 call edges to reduce the
computation and manual effort for further steps. Per GraalVM requirements, we only selected
projects we could successfully build (compile and achieve green tests) using Java at 21.

3- Reduction.AlphaTrans currently supports the following Java APIs: core Java API (java.util,
java.text, java.lang, java.io, java.nio, java.net, java.time, and java.math) and third-party li-
braries (org.opentest4j, org.slf4j.Logger, and org.junit). We automatically removed all other
third-party library dependencies and their usage in the source code in the selected projects. We
chose a project if at least 50% of its total methods were preserved after such process. Table 1 shows
the list of ten projects used in the evaluation of AlphaTrans and details about their size (classes,
methods, tests, and fragments).

AlphaTrans uses CodeQL [19] and tree-sitter [57] for static analysis. For running tests, validating
translation, and computing coverage, AlphaTrans uses GraalVM 21.0.3 + 7.1 [41], JUnit 4 and
5 [52], Pytest 8.2.1 [45], JaCoCo [51], and Python’s coverage [4]. AlphaTrans can work with
API-access and open-access LLMs. We considered the following criteria for selecting the LLM: (1)
for better reproducibility, we prioritized open-access models; (2) due to computing constraints, we
wanted an LLM with moderate size (> 10𝐵 but < 70𝐵 parameters); (3) the model should perform
reasonably well in code-related tasks; and (4) the model should have fast inference time due to the
huge number of prompts. Per the mentioned criteria, we selected DeepSeek-Coder-33b-Instruct for
our experiments. We prompted DeepSeek-Coder-33b-Instruct under temperature 0 setting to make
translations reproducible. We used the LLM’s default setting for other parameters. For the base
prompting (Algorithm 2), we set the minimum and maximum values of the reprompting budget to 3
and 5. For the feedback prompting, we set the reprompting budget to 1, i.e., AlphaTrans attempts
to fix issues with feedback for only once.

7.2 RQ1: Effectiveness of AlphaTrans

In this RQ, we evaluate AlphaTrans in (1) type translation and skeleton construction (§7.2.1) and
(2) compositional translation and validation (§7.2.2).

7.2.1 Effectiveness in type resolution and skeleton validation: AlphaTrans extracted 1, 797 distinct
types from the source projects and attempted to translate them to equivalent Python types. Of these,
915 are application-level types (e.g., classes defined within the Java projects) and were directly
resolved during skeleton construction. AlphaTrans prompts DeepSeek-Coder-33b-Instruct to
resolve the remaining 882, out of which it successfully translated 738 ((915 + 738)/1, 797 = 91.99%)
of them: generated types passed the syntactic and runtime check. The column ATR in Table 1

12 Ibrahimzada et al.

Table 1. Effectiveness of AlphaTrans in program transformation, automated type translation, and skeleton

validation. ATR: Automated Types Resolution, SV: Skeleton Validation.

Subjects # Classes # Methods # Original
Tests

Method
Coverage (%) ATR (%) SV (%)

Fragments
Fields Application

Methods
Test

MethodsApplication Test
cli [10] 58 664 437 93.4 96.6 100 104 57 273 2,180
codec [11] 156 1780 992 86.5 96.0 100 425 140 680 2,849
csv [12] 41 694 309 87.7 92.3 100 146 35 235 1,272
exec [13] 56 407 70 53.2 78.9 100 104 27 248 327
fast-pfor [33] 82 971 82 50.5 87.4 100 127 14 748 302
fileupload [14] 49 381 39 20.3 98.3 100 121 39 192 194
graph [15] 118 879 146 58.4 97.1 100 216 29 541 977
jansi [49] 48 474 107 25.4 84.8 100 378 0 409 123
pool [16] 98 1097 73 24.6 91.6 100 203 91 682 649
validator [17] 130 1,228 464 61.9 95.5 100 421 209 646 1,463
Total/Average 836 8,575 2,719 56.2 91.9 100 2,245 641 4,654 10,336

shows the results of automated type resolution. Since type resolution is essential to project skeleton
construction, we manually checked the type mappings generated by DeepSeek-Coder-33b-Instruct,
and also attempted to translate the remaining unresolved 144 types.

Through manual investigation of the automatically resolved types, we observed that DeepSeek-
Coder-33b-Instruct’s type resolution for 182 cases, while correct, can be improved. For example,
AlphaTrans translated java.io.File, a class concerning file manipulation functionality to str. The
resolved type can represent file paths in Python but lacks features for file manipulation. We suspect
this translation is impacted by the Java use case provided in the prompt. While this translation
is correct concerning the use case, we replaced it with pathlib.Path to have a more generic type
mapping. We also augmented the type mapping with additional types in the target language for
38 types. For example, AlphaTrans translated java.nio.Buffer to bytearray, which is correct as
they both provide a mutable sequence of bytes with efficient in-place modifications. However,
array.array and memoryview also provide similar functionality with efficient and low-level data
manipulation capabilities. Consequently, we augmented type mapping to typing.Union[bytearray,

array.array, memoryview]. Given that type mapping can be reused, this one-time manual effort
increases the chance of AlphaTrans’s success on unseen projects.
Using the universal type mapping, AlphaTrans successfully creates and validates project

skeletons in target PL, achieving 100% syntax and runtime validation (column SV in Table 1). The
skeleton validation step ensures all module imports, class structures, method signatures, and type
annotations are done properly, making the subsequent steps easier. Applying AlphaTrans to
unseen projects, if a class skeleton cannot be validated, AlphaTrans removes it from the target
project, updates the skeleton based on the class dependencies, and proceeds to the next phase.

Summary. AlphaTrans can successfully transform projects to remove method and con-
structor overloading. Moreover, it can automatically translate 91.99% of the source PL types
and use that to create and validate project skeletons in the target PL.

7.2.2 Effectiveness in compositional translation and validation: Table 2 shows the detailed composi-
tional translation and validation results. The AMF column indicates the total number of application
method fragments. The numbers in subsequent columns demonstrate the effectiveness of Al-
phaTrans in translation and validation of AMFs only4. The Syntax Check column indicates the
percentage of AMFs that pass syntactic validation. Column SNEF shows the percentage of AMFs not
covered by source PL tests. These results show that AlphaTrans successfully creates syntactically
4Due to space limit, please refer to our artifact [31] for details about all translation and validation of other fragments shown
in Table 1.

Repository-Level Compositional Code Translation and Validation 13

Table 2. Effectiveness of AlphaTrans in compositional translation and validation when using test translation

and language interoperability as validation techniques. AMF: #Application Method Fragments, SNEF: Source

Non-Exercised Fragments, GS: Graal Success, GF: Graal Fail, GE: Graal Error, TNEF: Target Non-Exercised

Fragments, ATP: Fragments All Test Pass, OTF: Fragments One Test Fail,MTF: Fragments Many Test Fail,

ATF: Fragments All Test Fail, TPR: Test Pass Rate, RE: Runtime Error, AF: Assertion Failure.

Subjects AMF
Syntax
Check
(%)

SNEF
(%)

GraalVM Test Translation M1
GS (%) GF (%) GE (%) TNEF(%)

ATP
(%)

OTF (%) MTF (%) ATF (%) TPR
(%)Overall RE AF Overall RE AF Overall RE AF All Some

cli 273 100 6.6 70.7 11.7 11.0 25.6 10.3 12.8 51.4 48.6 35.9 91.0 9.0 8.8 100 0.0 10.1 0 14
codec 680 98.5 13.5 25.4 49.9 11.2 61.0 4.1 4.4 60.0 40.0 12.8 55.1 44.9 4.1 75.2 24.8 9.4 11 24
csv 235 98.7 12.3 38.7 26.8 22.1 83.0 0.9 1.3 33.3 66.7 0.0 0.0 0.0 2.6 100 0.0 0.2 0 0
exec 248 100 46.8 33.5 2.0 17.7 31.5 4.4 2.0 40.0 60.0 8.1 93.6 6.4 7.3 100 0.0 19.3 6 6
fast-pfor 748 95.3 49.5 11.9 24.6 14.0 35.4 4.8 2.0 86.7 13.3 4.5 79.3 20.7 3.7 87.4 12.6 20.1 6 14
fileupload 192 100 79.7 8.9 1.0 10.4 7.8 3.6 7.3 28.6 71.4 1.6 87.5 12.5 0.0 0.0 0.0 63.4 2 3
graph 541 99.6 41.6 24.4 23.7 10.4 53.0 0.4 1.1 100 0.0 1.7 100 0.0 2.2 100 0.0 11.0 0 1
jansi 409 99.8 74.6 8.1 11.5 5.9 23.5 0.2 1.7 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0 1
pool 682 100 75.4 5.6 2.8 16.3 21.7 1.6 1.0 100 0.0 0.3 100.0 0.0 0.0 0.0 0.0 6.6 4 2
validator 646 99.2 38.1 30.5 11.1 20.3 41.6 4.0 5.7 70.3 29.7 5.3 83.7 16.3 5.3 99.3 0.7 11.7 1 15
Total/
Average 4,654 99.1 43.8 25.8 16.5 13.9 38.4 3.4 3.9 67.0 33.0 7.0 69.0 11.0 3.4 66.2 3.8 15.3 30 80

correct code (99.1%, on average). We also observe that 43.8% of AMFs are not covered during the
execution of any test, i.e., we cannot go beyond syntactic check and validate their runtime behavior
or functional equivalence.

For 56.2% of AMFs that can be covered by source project tests, AlphaTrans attempts to validate
the functional equivalence using GraalVM. The super column GraalVM shows the percentage of
AMFs that GraalVM executes and successfully validates (GS), executes but there is a test assertion
failure (GF), and cannot execute due to its limitation (GE) mentioned in §6.1. On average, 25.8%
(min=5.6% and max=70.7%), 16.5% (min=1% and max=49.9%), and 13.9% (min=5.9% and max=22.1%)
of AMFs resulted in Graal Success, Graal Fail, and Graal Error, respectively. Note that these numbers
add up to 56.2% of AMFs that were covered by source program tests. With respect to only covered
methods, GraalVM Success will be 45.91%. Furthermore, our analysis shows that a high portion
of methods that are not covered by tests are either abstract methods or getter/setter methods. If
their translations are syntactically correct, they are also likely functionally equivalent, which can
ramp up the success rate (§7.5). Spearman Rank Order Correlation [50] indicates a strong positive
correlation between the method coverage (Table 1) and GS numbers (𝜌 = 0.88), confirming that
with better method coverage, the validated AMFs are very likely to be higher.

Regardless of GraalVM’s validation for functional equivalence, AlphaTrans translates and
executes the test fragments on the recomposed translated project. Super column Test Translation
shows the results of test translation and execution. Column TNEF indicates the ratio of AMFs
where execution of translated tests never reached them. Columns ATP through ATF show the
number of AMFs that AlphaTrans executed using translated test fragments, categorized per the
test execution results. On average, for 3.4% of AMFs, all the test fragments that covered them were
marked as pass (ATP). For 3.9% and 7.0%, at least one (OTF) or more than one test (MTF) failed. For
3.4% of them, all the test fragments failed.
For cases with test failure, columns RE and AF show the breakdown of whether test failure

was due to assertion failure or runtime error. From the breakdown of results, we can observe that
most translated test executions terminated with a runtime error due to translation bugs and never
reached the assert statement. Our manual investigation confirms that a high rate of runtime errors
is due to a relatively small number of fragments with translation bugs. Although test decomposition
helps with test translation coupling effect (§2), there is still a high degree of runtime errors due
to the long call chains in these projects (the average number of methods executed per test in the

14 Ibrahimzada et al.

original and decomposed test suites are 27.4 and 21.8). As a result, the overall pass rate, i.e., the
percentage of recomposed test fragments for the translated projects that pass (column TPR), is low.

Finally, we calculated the number of AMFs that GraalVM could not execute (numbers under GE
column) but translated test fragments exercised (column M1). All indicates the number of AMFs
with all passing tests, including test fragment with assert statement, indicating the validation of
functional equivalence. Some corresponds to the number of AMFs with at least one passing test,
which indicates runtime validation. Overall, test translation can validate the functional correctness
and runtime behavior of 30 and 80 fragments that GraalVM could not exercise.

Summary. AlphaTrans effectively performs compositional translation and validation of
6, 899 source code fragments, achieving overall 99.1% syntactical correctness, 44.5% runtime
behavior validation, and 25.8% functional equivalence.

7.3 RQ2: Translation Bugs and Fixes

This research question presents the manual effort for fixing translation bugs in a subset of studied
subjects, namely Commons-FileUpload, Commons-CLI, Commons-CSV, and Commons-Validator. We
also discuss some of the translation bugs and fixes for them to better illustrate the challenges in
code translation.

7.3.1 Human Study. Our two human subjects were selected due to their relative familiarity with
the selected projects. Their effort indicates an upper bound for the amount of time required to fix
translation bugs since developers of the source projects are likely to fix the bugs better and faster.
We shared with them the source program in Java, the translations by AlphaTrans, and all the
reports and artifacts generated by AlphaTrans during translation.
For Commons-FileUpload, achieving green tests took roughly 5.5 hours and required 120 line

additions and 114 line deletions from partial translation generated by AlphaTrans. For Commons-
CLI, the manual fix took roughly 11 hours to fully achieve all passing tests, making 614 and 1, 253
line additions and deletions, respectively. For Commons-CSV, the project was very dense, with a
lot of method calls, making it harder to manually fix bugs. Nevertheless, a developer achieved all
green tests in 30 hours with 2, 676 and 999 line additions and deletions, respectively. Finally, for
Commons-Validator, the developer spent 34 hours to fix translation bugs, with 3, 585 and 2, 416 line
additions and deletions, respectively. One of the major feedback from developers was that test
decomposition greatly helped locate and fix translation bugs: in case of a test failure, developers
only need to investigate the last call statement in the failed test fragment instead of looking at the
stack trace and other prior calls (more quantified details about the impact of test decomposition on
validation in §7.4).

7.3.2 Translation Bugs. Our publicly available artifacts [31] contain partial translations and fixed
versions as separate commits. These commits can serve as useful benchmarks for evaluating tech-
niques such as fault localization, program repair, and test generation. This section shows four
instances of such translation bugs. The two most prevalent sources of translation bugs are mis-
matches between APIs and behavioral differences in the PLs. The code snippet below demonstrates
a bug that happened due to a mismatch in the logic of Calendar (Java) and datetime (Python). Line 3
in Java sets the MONTH field to 0, which corresponds to the first month of the year (January). Similarly,
the Python translation sets the month attribute to 0; however, in the Python library, January is the
first month, i.e., the correct translation should use index 1.

Repository-Level Compositional Code Translation and Validation 15

1 ----------- JAVA SOURCE CODE -----------
2 Calendar calendar = Calendar.getInstance()
3 calendar.set(Calendar.MONTH, 0);

1 ---------- PYTHON TRANSLATION ----------
2 calendar = datetime.datetime.now()
3 - calendar = calendar.replace(month=0)
4 + calendar = calendar.replace(month=1)

The next example shows the difference in implicit type casting between the two Pls. Line 5 in Java
source code concatenates a String with nullStr = null. During execution, Java runtime silently
casts null to a String and then performs the binary operation on it. In Python, concatenating an
str with None results in a TypeError as the operands of the binary operation has different types. A
correct Python translation requires explicit casting of None to str as shown in Line 5.

1 ----------- JAVA SOURCE CODE -----------
2 qChar = "'";
3 nullStr = null;
4
5 this.qNullStr = qChar + nullStr + qChar;

1 ---------- PYTHON TRANSLATION ----------
2 qChar = "'"
3 nullStr = None
4 - self.qNullStr = qChar + nullStr + qChar
5 + self.qNullStr = qChar + str(nullStr) + qChar

The third example shows an instance of write(int b)method from ByteArrayOutputStream class,
where the least significant 8 bits of the integer (b2 « 4) | (b3 » 2) are directly written to the
stream. The incorrect Python translation attempts to construct a bytes object using a singleton
list with the input integer before writing it to an object of io.BytesIO. However, this neglects that
the bytes() constructor requires the integers in the input iterable to be strictly in the range of
[0, 255]. Thereby, a ValueError is thrown when b2 is large. The correct translation requires 0xF, a
mask that maintains only the 4 lowest bits of b2 before left-shifting by 4 as shown in Line 3 under
Python translation. Given that b3 and b4 each contain no more than 8 bits, this change ensures the
least significant 8 bits of (b2 « 4) | (b3 » 2) are correctly written to the BytesIO object.

1 ----------- JAVA SOURCE CODE -----------
2
3 out.write((b2 << 4) | (b3 >> 2));

1 ---------- PYTHON TRANSLATION ----------
2 - out.write(bytes([(b2 << 4) | (b3 >> 2)]))
3 + out.write(bytes([((b2 & 0xF) << 4) | (b3 >> 2)]))

The last code snippet shows an example where the Java behavior of an iterator is unavailable in
Python. Specifically, the incorrect Python translation uses next() to implement both .next() and
.hasNext() calls of Java iterator. The issue is that calling next() increments the iterator in Python.
The correct translation should implement PeekableIterator interface in Python with a method
hasNext() -> bool.

1 ----------- JAVA SOURCE CODE -----------
2 Iterator<String> headers = ls.keySet().iterator();
3
4 assertEquals("content", headers.next());
5
6 assertFalse(headers.hasNext());

1 ---------- PYTHON TRANSLATION ----------
2 - headers = iter(ls.keys())
3 + headers = PeekableIterator(ls.keys())
4 self.assertEqual("content", next(headers))
5 - self.assertFalse(next(headers, None) is not None)
6 + self.assertFalse(headers.hasNext())

Implications. In order to obtain correct translation, especially for translating APIs, models need
to generate test cases as well, which will validate the translated fragment in isolation. This could
be an interesting direction for applying the agentic approach, where the orchestrating agent can
decide when to generate test cases, and the test case generator agent gets all the information by
running static analysis tools, gathering context from previous runs, collecting API documentation
by crawling internet, and can finally generating the translation based on all the information.

Summary. Although AlphaTrans cannot validate all the translations, it provides partial
translations and artifacts that developers can use to complete the translation and achieve
green tests in a reasonable time (20.1 hours, on average).

7.4 RQ3: Impact of Test Decomposition

We previously showed the effectiveness of test translation in validating the runtime behavior or
even the functional correctness of application method fragments (§7.2.2). To better understand the

16 Ibrahimzada et al.

cli codec exec
fast-pfor

fileuploadgraph jansi pool

Projects

0

20

40

60

80

100
R

at
io

 in
 t

es
t

su
it

e
(%

)

0

20

40

60

80

100

Te
st

s
w

it
h

m
in

. 2
 f

ra
gm

en
ts

 (
%

)Ratio Selected Fail Success Pass Rate Mean Median

Fig. 6. Effectiveness of decomposing test suites in AlphaTrans for validating earlier fragments in failing tests.

effect of test decomposition and how it helps with the test translation coupling effect, we collected
translated unit tests with at least two corresponding decomposed test fragments. We further
filtered out these unit tests and kept those that all their decomposed test fragments were executed,
regardless of passing or failing. The yellow bars in Figure 6 show the percentage of our selected
unit tests from the translated test suites. For Commons-CSV and Commons-Validator, none of the
unit tests met the criteria, so we excluded them from further investigation.

We categorized the selected unit tests into two groups: Those with all their test fragments pass
(green bars in Figure 6), and those with at least one test fragment fail (red bars in Figure 6). For the
unit tests in the latter group, we calculate the pass rate of the decomposed test fragments. The blue
box chart in Figure 6 shows the distribution of the measured pass rate per unit test. These unit tests
would have been marked as fail without test decomposition. However, we can observe that these
tests can be decomposed into test fragments that 63.43% of them pass, on average. These results
confirm how decomposed test fragments were useful in helping developers localize translation
bugs more easily and resolve the translation bugs faster.

Summary. Test decomposition unburdens validation of application method fragments from
incorrect translations. On average, 63.43% of test fragments for unit tests that would have
been marked as failed achieved a test pass.

7.5 RQ4: Impact of Test Coverage

While existing developer-written tests are useful for validating functional equivalence, they can
pose two major issues for automated code translation and validation. First, the coverage for these
tests can be extremely low (e.g., 20.3% for Commons-Pool [16]), preventing most of the code from
being validated (as shown in RQ1, the translation validation rate strongly correlates with test suites’
(method) coverage). Second, executing a developer-written test can have a long call sequence.
To show the positive impact of better, more focused tests with higher coverage on translation
validation, we automatically generated more tests using EvoSuite [18]. We generated EvoSuite tests
with the test generator’s default settings: used DynaMOSA [43] as optimization algorithm and set
a timeout of 120 seconds as stopping criteria.
Table 3 compares the properties of the developer-written tests and EvoSuite tests. Since we

configure EvoSuite to generate several tests per each Java class, the average Method Coverage of its
tests is higher than developer-written tests (79.3% compared to 56.2%). Furthermore, the average
number of methods executed per single test is almost half that of decomposed test suites (11.4

Repository-Level Compositional Code Translation and Validation 17

Table 3. Effectiveness of test augmentation in exercising and validating more application method fragments.

Subjects Developer-Written Test Evosuite Test
Method

Coverage (%)
Decomposed

Tests
Avg. Methods
Executed / Test

TPR
(%)

Method
Coverage (%) # Tests Avg. Methods

Executed / Test
TPR
(%)

cli 93.4 3036 34.3 10.1 83.5 569 12.2 13.9
codec 86.5 3522 10.6 9.4 86.9 1141 8.0 48.6
csv 87.7 1219 52.6 0.2 68.5 220 39.2 8.6
exec 25.4 311 19.0 19.3 76.8 245 6.3 28.2
fast-pfor 61.9 249 41.6 20.1 82.6 1843 4.3 30.9
fileupload 50.5 93 3.5 63.4 84.4 231 5.3 41.1
graph 58.4 933 25.0 11.0 86.3 800 9.0 9.1
jansi 24.6 187 13.6 1.1 70.3 332 9.1 14.2
pool 20.3 287 6.5 6.6 69.1 394 7.4 5.6
validator 53.2 1479 11.7 11.7 84.5 1305 13.4 3.3
Total/
Average 56.2 11316 21.8 15.3 79.3 7080 11.4 20.3

compared to 21.8methods). We translated EvoSuite tests and executed the translated projects using
them. As corroborated by the numbers under columns TPR, we can see that we achieve a higher
test pass rate (20.3% compared to 15.3%) on the same translated code. Note that not all the EvoSuite
tests have assertions, and even if they do, the quality of the assertions could be lower compared to
developer-written tests (e.g., checking trivial properties that result in a test pass). Thereby, we only
claim that higher TPR of such tests enhance runtime behavior validation, which is still promising in
code translation. Unfortunately, EvoSuite is not compatible with Java 21, which is required for the
GraalVM component of AlphaTrans. Otherwise, we could use the generated tests in AlphaTrans.
We anticipate including it in the loops could have also improved the overall quality of translations.

Summary. Augmenting existing test suite increases code coverage for exercising and vali-
dating more application method fragments. Moreover, the generated tests are more focused
and on average invokes 50% less methods than developer-written tests.

8 Related Work

There are generally two main approaches to translating code from one programming language to
another: using transpilers and statistical machine translation and leveraging language models.

Code translation using non-LLM-based approaches. In this domain, tools like C2Rust [24],
CxGo [56], Sharpen [44], and Java2CSharp [25] have been developed to translate code from C to
Rust, C to Go, and Java to C# respectively. However, a recent study [42] revealed that, apart from
C2Rust and CxGo, other tools lack proper maintenance. For CxGo, language models outperform
traditional approaches, whereas for C2Rust, language models generate safer but less effective
code, aligning with the primary goal of translating C code to Rust. In terms of statistical machine
translation, works by Nguyen et al. [36–38], and Chen et al. [6] focus on translating Java to C#.
Additionally, deep learning approaches have been utilized for code translation [47, 48]. However,
none of these efforts have tackled the translation of real-world Java projects to Python.

Code translation using LLMs. Recently, large language models have been employed for code
translation [7, 28, 42, 55, 59, 62], demonstrating high success rates on crafted examples but poor
performance on real-world projects. Other studies [1, 63] have also utilized language models for
code translation, mainly focusing on crafted benchmarks. Recently, there have been works that use
transpiler output to guide the code translation [60]. However, the limitation of such work is the
availability of robust and well-maintained transpilers, which, in many cases, may not be a feasible
solution. Nitin et al. [39] introduced a specification-based translation, where natural language
specification has been captured from the source code, which helps the translation process. Whereas

18 Ibrahimzada et al.

Yang et al. [61] used tests to assist the translation. However, compared to previous works, the major
differences are (a) the first attempt to translate a real-world project, (b) modular translation, and (c)
a validation-guided translation approach.

9 Threats to Validity

Like most approaches, AlphaTrans possesses some limitations and comes with a list of threats to
the validity. In this section, we will discuss how we mitigated various threats.
External Validity. One of the key external threats is the generalizability of our approach. The

translation pipeline is very generic and can be extended for more language pairs. Also, the majority
of the tools that we used support a large set of programming languages. However, to expedite the
research in repository-level translation, we build the first version of AlphaTrans to be specific
towards Java to Python.

Internal Validity. One major internal threat can be that the results are calculated based on a single
run. To mitigate that threat, we ran AlphaTrans with greedy decoding and temperature 0, which
reduces the model’s creativity but makes the output consistent with several runs. Another threat
in this group can be the manual validation of the translated types. To address that, several authors
have verified the types individually and consulted API documents when necessary.
Construct Validity. In order to mitigate construct validity, AlphaTrans is built and validated

with well-vetted tools like, GraalVM [41], JaCoCo [51], coverage for Python [4], CodeQL [19], etc.

10 Concluding Remarks

In this paper, we introduced AlphaTrans, a neuro-symbolic approach that combines the power of
static analysis and emerging abilities of Code LLMs in code synthesis to automate repository-level
code translation and validation. AlphaTrans decomposes the program into smaller fragments
and translates the fragments in the reverse call order, originally building the project in the target
language. In addition to syntax check, AlphaTrans implements two levels of validation through
GraalVM and test translation. Our results demonstrate the effectiveness of AlphaTrans in translat-
ing ten real-world Java projects to Python, achieving 99.1% syntactical correctness, 44.5% runtime
behavior validation, and 25.8% functional equivalence. AlphaTrans is the first approach to trans-
late and validate the entire repository, and we envision several research directions to advance
repository-level code translation and validation as follows:
One of the major challenges of repository-level code translation is identifying suitable library

APIs in the target PL. Often, equivalent Python APIs may not exist, requiring new code generation
or translation of the library API itself. Even if similar libraries exist, the logic of libraries might be
different in two PLs. AlphaTrans supports translating frequently used APIs and aims to build a
generic pipeline. Supporting all the libraries in the pipeline remains an open challenge. Furthermore,
while the idea of compositional translation and validation is PL-agnostic, the static analysis makes
the extension of AlphaTrans to translating from other source projects challenging. Devising
LLM-enabled or PL-agnostic static analysis approaches can benefit code translation approaches such
as AlphaTrans. We also showed that the quality of the source project test suite can significantly
impact the translation validation results. As part of our future work, we plan to integrate an
LLM-based test generator into the AlphaTrans pipeline to advance the validation component.

11 Data Availability

The implementation of AlphaTrans and all the artifacts required for reproducing the results
presented in this paper are publicly available [31].

Repository-Level Compositional Code Translation and Validation 19

References

[1] Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang. 2023. AVATAR: A Parallel
Corpus for Java-Python Program Translation. In ACL. ACL, Toronto, Canada, 2268–2281.

[2] Anthropic AI. 2024. Claude 3. https://www.anthropic.com/news/claude-3-family.
[3] Andrés Bastidas Fuertes, María Pérez, and Jaime Meza Hormaza. 2023. Transpilers: A Systematic Mapping Review of

Their Usage in Research and Industry. Applied Sciences 13 (2023), 3667.
[4] Ned Batchelder. 2024. Coverage.py. https://pypi.org/project/coverage.
[5] Dante Broggi and Yi Liu. 2023. On the Interoperability of Programming Languages via Translation. In CSCE. IEEE, Las

Vegas, NV, USA, 2579–2585.
[6] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-to-tree Neural Networks for Program Translation. In NIPS.

Curran Associates Inc., Red Hook, NY, USA, 2552 – 2562.
[7] Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei Chen, Liang

Chen, et al. 2024. CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model. In ICSE-SIEP. ACM, New
York, NY, USA, 418–429.

[8] George Dony, Girase Priyanka, Gupta Mahesh, Gupta Prachi, and Sharma Aakanksha. 2010. Programming Language
Inter-Conversion. International Journal of Computer Applications 1, 20 (2010), 63–69.

[9] Hadeel A. Osman Eman J. Coco and Niemah I. Osman. 2018. JPT : A Simple Java-Python Translator. CAIJ 5, 2 (2018),
1–18.

[10] The Apache Software Foundation. 2024. Apache Commons CLI. https://github.com/apache/commons-cli
[11] The Apache Software Foundation. 2024. Apache Commons Codec. https://github.com/apache/commons-codec
[12] The Apache Software Foundation. 2024. Apache Commons CSV. https://github.com/apache/commons-csv
[13] The Apache Software Foundation. 2024. Apache Commons Exec. https://github.com/apache/commons-exec
[14] The Apache Software Foundation. 2024. Apache Commons FileUpload. https://github.com/apache/commons-

fileupload
[15] The Apache Software Foundation. 2024. Apache Commons Graph. https://github.com/apache/commons-graph
[16] The Apache Software Foundation. 2024. Apache Commons Pool. https://github.com/apache/commons-pool
[17] The Apache Software Foundation. 2024. Apache Commons Validator. https://github.com/apache/commons-validator
[18] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation for object-oriented software.

In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering (Szeged, Hungary) (ESEC/FSE ’11). Association for Computing Machinery, New York, NY, USA, 416–419.
https://doi.org/10.1145/2025113.2025179

[19] GitHub. 2024. CodeQL. https://codeql.github.com
[20] GraalVM. 2024. Polyglot API. https://www.graalvm.org/latest/reference-manual/polyglot-programming.
[21] Giovani Guizzo, Jie M. Zhang, Federica Sarro, Christoph Treude, and Mark Harman. 2023. Mutation analysis for

evaluating code translation. Empirical Software Engineering 29 (2023), 23 pages.
[22] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Yu Wu, YK Li,

et al. 2024. DeepSeek-Coder: When the Large Language Model Meets Programming – The Rise of Code Intelligence.
arXiv:2401.14196

[23] Ali Reza Ibrahimzada. 2024. Program Decomposition and Translation with Static Analysis. In Proceedings of the 2024
IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings. 453–455.

[24] Immunant. 2024. C2Rust Transpiler. https://github.com/immunant/c2rust.
[25] Paul Irwin. 2024. Java to CSharp Converter. https://github.com/paulirwin/JavaToCSharp.
[26] Suman Jain and Inderveer Chana. 2015. Modernization of Legacy Systems: A Generalised Roadmap. In ICCCT. ACM,

New York, NY, USA, 62–67.
[27] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. 2013. Cloud Migration Research: A Systematic Review. IEEE

Transactions on Cloud Computing 1 (2013), 142–157.
[28] Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu, Xiaodong Gu, and Beijun Shen. 2023. On the evaluation of neural

code translation: Taxonomy and benchmark. In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, Las Vegas, NV, USA, 1529–1541.

[29] Ravi Khadka, Belfrit V Batlajery, Amir M Saeidi, Slinger Jansen, and Jurriaan Hage. 2014. How Do Professionals
Perceive Legacy Systems and Software Modernization? In ICSE. ACM, New York, NY, USA, 36–47.

[30] Musawwer Khan, Islam Ali, Wasif Nisar, Muhammad Qaiser Saleem, Ali S Ahmed, Haysam E Elamin, Waqar Mehmood,
and Muhammad Shafiq. 2022. Modernization Framework to Enhance the Security of Legacy Information Systems.
Intelligent Automation & Soft Computing 32 (2022), 543–555.

[31] Intelligent CAT Lab. 2024. Artifact Website. https://github.com/Intelligent-CAT-Lab/AlphaTrans.
[32] Kevin Lano and Hanan Siala. 2024. Using model-driven engineering to automate software language translation.

Automated Software Engineering 31 (2024), 59 pages.

https://pypi.org/project/coverage
https://github.com/apache/commons-cli
https://github.com/apache/commons-codec
https://github.com/apache/commons-csv
https://github.com/apache/commons-exec
https://github.com/apache/commons-fileupload
https://github.com/apache/commons-fileupload
https://github.com/apache/commons-graph
https://github.com/apache/commons-pool
https://github.com/apache/commons-validator
https://doi.org/10.1145/2025113.2025179
https://codeql.github.com
https://www.graalvm.org/latest/reference-manual/polyglot-programming
https://arxiv.org/abs/2401.14196
https://github.com/immunant/c2rust
https://github.com/paulirwin/JavaToCSharp
https://github.com/Intelligent-CAT-Lab/AlphaTrans

20 Ibrahimzada et al.

[33] Daniel Lemire. 2024. JavaFastPFOR. https://github.com/lemire/JavaFastPFOR
[34] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler,

Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[35] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. 2024.
Lost in the Middle: How Language Models Use Long Contexts. TACL 12 (2024), 157–173.

[36] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2013. Lexical Statistical Machine Translation for
Language Migration. In FSE. ACM, New York, NY, USA, 651–654.

[37] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2014. Migrating Code with Statistical Machine
Translation. In ICSE Companion. ACM, New York, NY, USA, 544–547.

[38] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2015. Divide-and-Conquer Approach for Multi-phase
Statistical Migration for Source Code. In ASE. IEEE, Las Vegas, NV, USA, 585–596.

[39] Vikram Nitin, Rahul Krishna, and Baishakhi Ray. 2024. SpecTra: Enhancing the Code Translation Ability of Language
Models by Generating Multi-Modal Specifications. arXiv:2405.18574

[40] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774
[41] Oracle. 2024. GraalVM. https://www.graalvm.org.
[42] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi, Michele Merler, Boris

Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. 2024. Lost in Translation: A Study of Bugs Introduced
by Large Language Models while Translating Code. In ICSE. ACM, New York, NY, USA, 866–866.

[43] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Automated Test Case Generation as a Many-
Objective Optimisation Problem with Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44,
2 (2018), 122–158. https://doi.org/10.1109/TSE.2017.2663435

[44] Mono Project. 2023. Sharpen - Automated Java->C# coversion. https://github.com/mono/sharpen.
[45] pytest dev. 2024. Pytest. https://www.pytest.org.
[46] Lili Qiu. 1999. Programming Language Translation. Technical Report. Cornell University, USA.
[47] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. 2020. Unsupervised Translation of

Programming Languages. In NIPS. Curran Associates Inc., Red Hook, NY, USA, 20601 – 20611.
[48] Baptiste Roziere, Jie M Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and Guillaume Lample. 2021.

Leveraging Automated Unit Tests for Unsupervised Code Translation. arXiv:2110.06773
[49] Fuse Source. 2024. Jansi. https://github.com/fusesource/jansi
[50] Charles Spearman. 1961. The Proof and Measurement of Association between Two Things. The American Journal of

Psychology 15 (1961), 72 —- 101.
[51] The JaCoCo Team. 2024. Java Code Coverage. https://www.eclemma.org/jacoco/
[52] The JUnit Team. 2024. JUnit. https://junit.org/junit5/
[53] Andrey A Terekhov and Chris Verhoef. 2000. The Realities of Language Conversions. IEEE Software 17 (2000), 111–124.
[54] TIOBE. 2023. TIOBE Index. https://www.tiobe.com/tiobe-index.
[55] Sindhu Tipirneni, Ming Zhu, and Chandan K Reddy. 2024. StructCoder: Structure-Aware Transformer for Code

Generation. Transactions on Knowledge Discovery from Data 18 (2024), 1–20.
[56] Go Transpile. 2024. C to Go Translator. https://github.com/gotranspile/cxgo.
[57] Tree-Sitter. 2024. Tree-Sitter Library. https://tree-sitter.github.io/tree-sitter/
[58] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Christian Humer, Gregor

Richards, Doug Simon, and Mario Wolczko. 2013. One VM to Rule Them All. In Onward! ACM, New York, NY, USA,
187–204.

[59] Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. 2023. CodeTransOcean: A Comprehensive
Multilingual Benchmark for Code Translation. In EMNLP. ACL, Singapore, 5067–5089.

[60] Aidan ZH Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening. 2024. VERT: Verified
Equivalent Rust Transpilation with Large Language Models as Few-Shot Learners. arXiv:2404.18852

[61] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma, Zhi Jin, and Ge Li.
2024. Exploring and Unleashing the Power of Large Language Models in Automated Code Translation. FSE 1 (2024),
1585–1608.

[62] Xin Yin, Chao Ni, Tien N Nguyen, Shaohua Wang, and Xiaohu Yang. 2024. Rectifier: Code Translation with Corrector
via LLMs. arXiv:2407.07472

[63] Ming Zhu, Karthik Suresh, and Chandan K Reddy. 2022. Multilingual Code Snippets Training for Program Translation.
AAAI 36 (2022), 11783–11790.

https://github.com/lemire/JavaFastPFOR
https://arxiv.org/abs/2405.18574
https://arxiv.org/abs/2303.08774
https://www.graalvm.org
https://doi.org/10.1109/TSE.2017.2663435
https://github.com/mono/sharpen
https://www.pytest.org
https://arxiv.org/abs/2110.06773
https://github.com/fusesource/jansi
https://www.eclemma.org/jacoco/
https://junit.org/junit5/
https://www.tiobe.com/tiobe-index
https://github.com/gotranspile/cxgo
https://tree-sitter.github.io/tree-sitter/
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2407.07472

	Abstract
	1 Introduction
	2 Challenges in Repository-Level Code Translation
	3 Overview of Approach
	4 Program Transformation and Decomposition
	4.1 Program Transformation
	4.2 Program Decomposition

	5 Type Translation and Skeleton Construction
	5.1 Type Translation
	5.2 Skeleton Construction

	6 Compositional Translation and Validation
	6.1 Language Interoperability
	6.2 Target Program Recomposition
	6.3 Test Translation

	7 Evaluation
	7.1 Experiment Setup
	7.2 RQ1: Effectiveness of AlphaTrans
	7.3 RQ2: Translation Bugs and Fixes
	7.4 RQ3: Impact of Test Decomposition
	7.5 RQ4: Impact of Test Coverage

	8 Related Work
	9 Threats to Validity
	10 Concluding Remarks
	11 Data Availability
	References

