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Accurately identifying organisms based on their partially available genetic material is

an important task to explore the phylogenetic diversity in an environment. Specific frag-
ments in the DNA sequence of a living organism have been defined as DNA barcodes
and can be used as markers to identify species efficiently and effectively. The existing

DNA barcode-based classification approaches suffer from three major issues: (i) most of
them assume that the classification is done within a given taxonomic class and/or input

sequences are pre-aligned, (ii) highly performing classifiers, such as SVM, cannot scale

to large taxonomies due to high memory requirements, (iii) mutations and noise in input
DNA sequences greatly reduce the taxonomic classification score. In order to address
these issues, we propose a multi-level hierarchical classifier framework to automatically

assign taxonomy labels to DNA sequences. We utilize an alignment-free approach called
spectrum kernel method for feature extraction. We build a proof-of-concept hierarchical

classifier with two levels, and evaluated it on real DNA sequence data from Barcode of
Life Data Systems. We demonstrate that the proposed framework provides higher f1-score

than regular classifiers. Besides, hierarchical framework scales better to large datasets
enabling researchers to employ classifiers with high classification performance and high
memory requirement on large datasets. Furthermore, we show that the proposed frame-
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work is more robust to mutations and noise in sequence data than the non-hierarchical
classifiers.

1. Introduction

Classification of living organisms is a key problem in both biology and computer

science. Using traditional morphological keys for classification is often efficient only

for a particular gender or life stage. Besides, this method is slow and expensive, as

it requires the time and effort of highly experienced taxonomists.

DNA Barcoding has gained significant attention in the scientific community1,2 af-

ter it was firstly introduced.3 Specific gene regions have been chosen as markers

that can distinguish between different species.4–6 For animal groups, cytochrome

c oxidase 1 gene (COI) is used as a barcode, while matK and rbcL are used for

identifying land plants, and ITS is used for fungi.7 The problem then translates

into classifying barcodes to a known species in a fast and efficient way.8

There are a number of methods that tackle with the DNA barcode-based classi-

fication problem using the tools of sequence comparison and alignment.9,10 How-

ever, aligning multiple sequences in an optimal way is computationally costly. Using

alignment-free kernel methods has been proven efficient for this problem.11 In this

approach, the occurrences of each possible fixed-length substring are counted in

each DNA barcode sequence. These substrings are called k-mers, where k is an in-

teger parameter that corresponds to the length of the substring. These k-mers are

then used as features with their corresponding count per sequence as feature values.

Several machine learning classification techniques are proposed and compared to

determine species given a DNA Barcode.9 More specifically, support vector ma-

chines,12 the rule-based method RIPPER,13 the decision tree C4.5,14 and the Näıve

Bayes are considered.15 A major drawback in such studies is that only pre-aligned

sequences are considered. Besides, the classification is strictly performed within the

scope of specific taxonomic classes like bats, birds, fungi, or fishes. Hence, in order

to classify a given barcode sequence, it first needs to be aligned, and one also needs

to know to which taxonomic class the given sequence belongs to.

Besides, phylogenetic and statistical classification methods are also studied to-

gether.16 More specifically, Neighbor Joining and PHYML are studied as phylo-

genetic methods,17,18 and k-nearest neighbor, classification and regression trees

(CART), random forests, and support vector machine are evaluated under statis-

tical classification methods. However, a limitation is that apriori knowledge about

the genus of the sequence is assumed to be available and employed sequences are

pre-aligned. Another direction is to exploit a supervised machine learning approach

that selects suitable nucleotide positions and then compute the logic formulas for
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species classification.10 Nevertheless, the input DNA barcode sequences are required

to be pre-aligned.

In later studies, the requirement for pre-aligned sequences are removed. As an ex-

ample, k-mers are employed for DNA barcode classification and analytics.11 In

particular, 10-mer features are exploited to train classification models using two

classes of algorithms: Nearest Neighbor and SVM.

Another alignment-free approach employs a new set of classification features that

are based on covariance of nucleotides in DNA barcodes.19 The computed features

are later exploited in a random forest classifier to perform phylogenetic analysis on

a particular fungi species.

In addition to real datasets, sytnthetic datasets are also considered and compared

within the domain of DNA barcode-based classification.20 To this end, different

classifiers including Simple Logistic Function,21 (ii) IBk from Lazy classifier,22 (iii)

PART from Rule based classifier,23 (iv) Random Forest from Tree based classifier,24

(v) Attribute Selected Classifier, and (vi) Bagging from Meta classifiers are bench-

marked.25

In most of the existing studies that focus on the problem of organism classification

using DNA sequences, the classification is mainly performed within a specific tax-

onomic class assuming apriori knowledge about the given to-be-classified sequence.

This assumption may not always hold true, e.g., when inspecting fossil remains or

sequences extracted from mud-samples and earth layers. In such situations, it is

hard to identify whether these sequences belong to the class of bats, birds, rodents,

fishes, etc. Furthermore, highly performing classifiers, such as SVM, cannot scale to

large taxonomies due to high memory requirements. Besides, mutations and noise

in input DNA sequences greatly reduce the taxonomic classification.

In order to address the above issues, in this paper, we introduce a hierarchical

framework that can be extended into one hierarchical classifier capable of classify-

ing any DNA barcode sequence without any apriori knowledge about its taxonomic

tree. This framework utilizes Support Vector Classifiers in order to build a two-stage

classifier that can predict the species given the DNA barcode sequence only, without

the need to compute any sequence alignment. Our framework enables leveraging the

strength of the Support Vector Classifiers while overcoming the scalability issues

that arise when the number of classes increases or when the data matrix size grows.

In order to establish a proof-of-concept, we test the proposed approach on five

different datasets obtained from Barcode of Life Data (BOLD) Systems:26 (i) Aves

(i.e, birds), (ii) Chiroptera (i.e., bats), (iii) Rodentia (i.e., rodents), (iv) Polypodi-
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opsida (a member of vascular plants), and (v) Pucciniomycetes (a member of fungi).

For each dataset, the classification performance of different classifiers using varying

subsequence lengths are compared. We observe that the SVM classifier with a linear

kernel outperforms all the other methods for larger subsequence lengths. The ran-

dom forest (RF) classifier, on the other hand, outperforms the SVM-based classifiers

when the subsequence length is relatively small. Then, we merge the five datasets to

examine the scalability of each classification method. For larger datasets, SVM was

not a feasible solution, since the data matrix was not representable. Nevertheless,

the RF method did not experience such problems, and provided a reasonable ac-

curacy (f1-score: 90.8%). In order to overcome this scalability drawback and utilize

the high classification performance of the linear kernel SVM, we build a hierarchi-

cal SVM-based classifier, and demonstrate that it outperforms the non-hierarchical

regular classifier (93.0% vs. 90.8%). Besides, we also study the robustness of the

proposed method by introducing artificial mutations to the sequences with increas-

ing ratios. Our experimental results show that as mutations rates increase, the

proposed hierarchical classifier framework exhibits more robustness than the other

non-hierarchical classifiers.

Our contributions in this paper are as follows:

• We propose a multi-level hierarchical DNA sequence classification frame-

work, and build a proof-of-concept instance with two taxonomic levels. The

proposed framework can be extended to predict the species within larger

scopes that go beyond just the taxonomic class level. More specifically, it

can be used as a blueprint in building a full supervised classifier that can

classify all life forms.

• We demonstrate that the hierarchical classifier framework classifies DNA

sequences with higher f1-score than the regular stand-alone classifiers.

• The proposed framework allows taking advantage of SVM’s high accuracy

prediction power for larger datasets as well by increasing its scalability

with multi-level architecture. While regular SVM-based classifiers run out

of memory when trained on a large dataset on a decently configured test

environment, the hierarchical SVM-based classifier successfully runs on the

same test hardware and dataset.

• We demonstrate that with the hierarchical classifier framework, the robust-

ness of classification in the presence of mutations and/or noise in sequence

data is higher than the regular non-hierarchical classifiers.

2. Methods

2.1. Kernel-based alignment-free method for feature extraction

Kernel-based methods are employed to represent sequences with variable lengths

and also to avoid the burden of handling insertions and deletions. Kernel-based
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methods have been proven to be efficient in a number of similar tasks like protein-

protein interaction prediction and protein classification.27–29 They have been also

demonstrated to be effective in tackling the problem of species classification using

DNA barcodes.11 In this method, sequences are represented as collections of short

substring kernels of length k. These substrings are called k-mers. Figure 1 illustrates

how a sequence can be represented as a vector of k-mers frequencies, where k = 5.

5-mer:

Count:

CCGCG CAAAT CGTCA .........

.........310

TCGTCACCAAATTTATAACGTCATCGTAACGTCA ...

Fig. 1: An example of how 5-mer kernels are used to represent a DNA barcode

sequence.

The number of k-mers increases exponentially with k. Since we have 4 bases (i.e., A,

C, G, T), the number of all k-mers is 4k. The occurrence frequency of these k-mers

are then used as features. A variation of this method employs mismatch-kernels

for feature extraction.29,30 In this case, at most m mismatches are allowed within a

substring. This can enhance the results of the classification task by making the data

matrix denser which is desirable for most of the classification algorithms. However,

in this paper, we do not study the effect of allowing mismatches and the effect of

changing the value of m. Instead, we focus on building a hierarchical classifier that

allows the classification tasks to be more efficiently performed on large datasets

that include different taxonomic classes.

In order to generate k-mers from raw datasets, we use the algorithm shown in

Fig. 2. The inputs are the sequence data from BOLD Systems and a number k that

represents the length of substring kernels. We first create an empty frequency dic-

tionary, and then populate it with all possible k-mer combinations of A, G, C and

T along with initial frequency value of 0 (lines 1-3). Next, we loop over the BOLD

Systems dataset until there are no samples left (lines 4-17). In each iteration, we

skip a DNA string if its length is smaller than 657, since the full length of COI

segment used as a DNA barcode is 657 bp (lines 5-7).31 Then, in a sliding window

manner, we consider each k-mer in the sequence (lines 9-16). We skip a k-mer if it

contains ambigous characters like ’-’ or ’N’ (lines 12-14). Then, we increment the

appearance frequency of each qualifying k-mer by 1 (line 15). At the end, the set

of all k-mers along with their frequencies is returned (line 18).
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Algorithm 1: k-mer Generation Algorithm

Input: sequence data S and a number k

Output: k-mers along with their frequencies

1 create an empty frequence dictionary, freq

2 create all k-mer combinations of A, G, C, and T.

3 insert all generated k-mer combinations into freq with frequency value 0.

4 Loop for each DNA sample D in S:

5 if length(D) <657 then

6 continue

7 end

8 i← 1

9 while i <= length(D)-k+1 do

10 k-mer ← D[i : i + k]

11 i←i+1

12 if k-mer contains nucleotides other than A, G, C, T then

13 continue

14 end

15 freq [k-mer ] ← freq[k-mer] + 1

16 end

17 end

18 return freq

Fig. 2: K-mer generation algorithm

2.2. Scalable Supervised Learning

In most of the related work, it has been shown that it is possible to train a super-

vised classifier that has the ability to predict the species given the DNA barcode

sequence. However, there were two factors that kept the effectiveness of such ap-

proaches restricted. First, these studies carried out the prediction effort within a

specific taxonomic organism rank, e.g., performing the experiments on the taxo-

nomic class level such as Chiroptera, Rodentia, Aves, Mammalia, etc.,9,11 or on the

taxonomic genus level as in.16 Hence, they assume the availability of apriori knowl-

edge of the taxonomic class or genus to which a specimen or a sequence belong

to. Such an assumption may not hold true in many cases, such as when inspecting

samples from a lake or soil.

Second, among supervised classification algorithms, Support Vector Machines

(SVM) are commonly employed in taxonomy classification, as it provides more

accurate results than many other methods. However, SVM suffers from scalability

issues when the number of classes in the dataset increases, as the data matrix grows
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in size. All these reasons hinder its use as an efficient classification algorithm to train

a classifier that predicts the species directly from the DNA barcode sequence. As, in

that case, the number of classes would be the number of all known species, and the

dataset would be all the data samples available on BOLD Systems. Motivated by

the above observations, in this paper, we propose a two-stage hierarchical classifier

inspired by the hierarchical nature of the taxonomy tree. The first stage predicts

the taxonomic class. Then, according to the prediction of the first-stage classifier,

the feature vector representing a given DNA barcode sequence is directed to the

corresponding classifier trained to predict the species within that taxonomic class.

A diagram of this framework is shown in Fig. 3.

Multiplexer
classFeature k-mersDNA barcode

Extraction
Class

Predictor

Class 1

Class 2

Class n
Classifier

Classifier

Classifier

Fig. 3: Two-stage hierarchical classifier for predicting the species without any apriori

knowledge about its taxonomic class

The illustrated framework is used to train a classifier capable of predicting the

species name for a given DNA barcode sequence out of 1400 species appeared in

the datasets used in this work. Although results were obtained for 1400 species that

belong to five different taxonomic classes (Aves, Rodentia, Chiroptera, Polypodiop-

sida, and Pucciniomycetes), the extension of this work into one hierarchical learner

capable of classifying all known living things is straightforward.

The algorithm in Fig. 4 provides a more detailed description of the proposed hier-

archical classification method in a 10-fold cross-validation setting. For each fold of

the dataset that is splitted in a stratified manner, we first determine the indices of

train and test portions of the dataset (line 2). Then, on the current training split,

we build a classification model for the first level to predict the class that a given

sequence belongs to (line 3). Then, the classifiers for the second level are built. More

specifically, in a loop, a separate species classifier for each taxonomic class is built

on the current training split (lines 4-6). In the next stage, using the above-created

classification models, predictions are computed for the sequences in the test split

(lines 7-12). In particular, for each sequence in the test split, we first run the class-

level model to predict the class (line 8). Next, we employ the species-level classifier
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that corresponds to the predicted class by the first-level classifier to predict the

species for the test sequence (lines 9-10). Finally, the set of the predicted species

for each sample is returned at the end (line 14).

Algorithm 2: Hierarchical Classification Algorithm

Data: k-merized data along with their frequencies

Output: species predictions for all samples

1 Loop until the end of stratified 10-Fold:

2 Set the train and test portions of the dataset

3 Train a classification model at class level on the training split

4 Loop for each taxonomic class:

5 train a classification model at species level based on training split

6 end

7 Loop over each sample in the test split:

8 X ← the predicted class for the current sample

9 Y ← the species-level model for class X that is built in line 5

10 run Y to predict the species for the current sample

11 save species prediction

12 end

13 end

14 return the set of species predictions for each sample in the dataset

Fig. 4: Hierarchical classification algorithm

3. Results

In this section, the proposed framework is experimentally assessed in terms of f1-

score, scalability, and robustness. We also compare it to regular non-hierarchical

approaches. As a proof-of concept, two popular supervised learning classifiers are

contrasted, namely, SVM and Random Forests. We study how different classifica-

tion methods perform and how varying k affects their performance. In the first

subsection, the performance within the scope of a taxonomic class level is evalu-

ated using five different datasets (Rodentia, Aves, Chiroptera, Polypodiopsida, and

Pucciniomycetes). Then, the robustness aspects of the classifiers are studied in the

presence of mutations or noise in data. Finally, a scalability analysis of the proposed

hierarchical classification is performed in comparison with the non-hierarchical clas-

sification.

For each experiment, the models are evaluated using 10-folds cross validation by

repeating the dataset randomization, splitting, training, and testing steps 10 times,
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and the resulting f1-scores are averaged. Moreover, in order to make sure that class

and species distributions match in both training and test splits, stratified sampling

is applied during 10-fold cross validation. Here, we report the averages over all runs.

All the experiments for this paper were carried out on a DELL R720 server whose

specifications are 24 core vCPU, 80GB RAM and 2.4TB Storage. All the scripts

are coded in Python using Scikit − Learn machine learning library to implement

SVM and Random Forest classifiers. Besides, Matplotlib and Seaborn are used for

visualization.32,33

3.1. Datasets

For this study, the datasets are obtained from BOLD Systems which is an initia-

tive to support the generation and application of DNA barcode data.26 It contains

8,132,361 DNA barcode sequences for animals, plants, fungi, and protists. The spec-

imen is collected from different sites by different organizations worldwide. Through

the portal of BOLD Systems, data for different life forms may be downloaded in

various formats including XML and tab-separated text.

Table 1: Class Datasets Summary

Dataset No. of species No. of samples

Chiroptera 122 4731

Rodentia 127 3653

Aves 841 4192

Pucciniomycetes 34 1905

Polypodiopsida 276 5850

In this paper, five datasets were used: Chiroptera, Aves, Rodentia, Polypodiopsida,

and Pucciniomycetes datasets. All major organism kingdoms (i.e., animals, plants,

and microbes) are represented in the dataset. As a preprocessing step, all the se-

quences that are less than 657 in length were removed since the full length of the

COI segment used as a DNA barcode sequence is 657 bp.31 However, sequences

with ambiguous letters like “Ns” and dashes “-” were kept. Table 1 presents a sum-

mary of datasets after the preprocessing step. Besides, the maximum, minimum,

and average frequencies were calculated and reported in Table 2.
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Table 2: Class Datasets Species Frequencies Summary

Dataset Maximum frequency Minimum frequency Average frequency

Chiroptera 0.2 0.0002 0.008

Rodentia 0.1 0.0002 0.008

Aves 0.02 0.0002 0.001

Pucciniomycetes 0.43 0.001 0.03

Polypodiopsida 0.09 0.0002 0.004

Fig. 5 through 9 show the percentage of removed samples for species in each dataset.

In particular, the total number of removed samples from Chiroptera is 5 which are

distributed over 4 unique species as shown in Fig. 5. No species is completely deleted

from Chiroptera.

Fig. 5: The percentage of removed samples for species in Chiroptera dataset

The total number of removed samples from Aves is 1035 which are distributed over

516 unique species. No species is completely deleted from Aves as shown in Fig. 6.

The total number of removed samples from Rodentia is 482 which are distributed

over 38 species. No species is completely deleted from Rodentia as shown in Fig. 7.
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Fig. 6: The percentage of removed samples for top-30 species with the highest

removal rate in Aves dataset

Fig. 7: The percentage of removed samples for top-30 species with the highest

removal rate in Rodentia dataset
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The total number of removed samples from Pucciniomycetes is 1001 which are dis-

tributed over 30 unique species. Ten species (i.e, Insolibasidium, Septobasidium,

Zaghouania, Helicobasidium, Platygloea, Cumminsiella, Batistopsora, Aecidium,

Eocronartium and Auriculoscypha) are completely removed from Pucciniomycetes

as shown in Fig. 8.

Fig. 8: The percentage of removed samples for top-30 species with the highest

removal rate in Pucciniomycetes dataset

The total number of removed samples from Polypodiopsida is 945 which are dis-

tributed over 82 unique species. No species is completely deleted from Polypodiop-

sida as shown in Fig. 9.
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Fig. 9: The percentage of removed samples for top-30 species with the highest

removal rate in Polypodiopsida dataset

3.2. The Evaluation of Non-hierarchical Classifiers

In this part of our experiments, the effect of changing the length of the subsequence

kernel k-mers on the f1-scores of non-hierarchical classifiers is studied. To this end,

on each of the datasets, three different classifiers (i.e., Random Forest with 10

estimators, SVM with linear kernel, and SVM with radial kernel) are trained and

tested using 10-folds cross-validation.

Fig. 10: Maximum mean f1-score of test folds from different models.
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Figure 10 presents a summary of how each classification algorithm performs on

different datasets. In all experiments, for SVM with radial kernel, the kernel width

is set to the number of samples in the training split at each iteration. In all charts,

boxplots are also included in order to demonstrate the variability of f1-scores across

different folds during cross-validation. Please note that in order to prevent the

overlap among box plots as well as the original f1-score lines, box plots are slightly

shifted so that they do not block each other in the visualization.

Fig. 11: The effect of changing the value of k on the classification f1-scores for the

Chiroptera dataset.

The results for the Chiroptera dataset are visualized in Fig. 11. The SVM classi-

fier with a linear kernel, for larger k values, outperforms the other classification

methods, while the Random Forest classifier performs better for lower k values. It

can also be noted that the f1-scores obtained with the SVM classifier with a linear

kernel increase as k increases in the range [1, 7] without any drop, unlike the SVM

classifier with a radial kernel which experiences f1-score drop for larger values of k.

Similar observations are made for the Rodentia dataset as illustrated in Figure

12.
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Fig. 12: The effect of changing the value of k on the classification f1-scores for the

Rodentia dataset.

Fig. 13: The effect of changing the value of k on the classification f1-scores for the

Aves dataset.
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As for the Aves dataset, although the test f1-score is lower than the other studied

datasets (see Fig. 10), the relative rank and behavior of the classifiers are similar

to the above results with the change of k, as shown in Fig. 13.

Fig. 14: The effect of changing the value of k on the classification f1-scores for the

Pucciniomycetes dataset.

Similar observations are made for the Pucciniomycetes and Polypodiopsida datasets

as illustrated in Fig. 14 and Fig. 15.

It can be concluded that, as long as the memory resources allow larger values of

k, it is possible to train an SVM classifier with a linear kernel that achieves better

classification scores than both an SVM classifier with a radial kernel and an RF

classifier. On the other hand, if the memory limitations hindered the increase of

k, one may opt for Random Forest classifier, as we show in the next section that

random forest requires less memory.

To sum up, the best f1-scores for all datasets are provided by an SVM classifier

with a linear kernel trained with subsequence length k = 7. As Fig. 10 shows, the

classification f1-score for the Aves dataset is comparably low. The reason behind

this is mainly the insufficient number of samples per species. Since, as summarized

in Table 1, the average number of samples per species in Aves dataset is significantly

lower than that of the other datasets.
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Fig. 15: The effect of changing the value of k on the classification f1-scores for the

Polypodiopsida dataset.

As consistent with our results in this section, the previous studies also reported

a similar observation that the classification performance improves as the value of

k increases in all datasets, and the percentage of improvement significantly drops

for the higher values of k.11 Besides, similarly, in our results, birds (i.e., Aves) has

the highest error rate as reported earlier in the literature.11 Finally, SVM’s better

performance is also in line with previously published results.9,16 As an example, in

Ref. 16, the method that obtained the best score varied according to the dataset.

However, the support vector machine method attained the best score at three out

of six datasets while each of the other methods achieved the best score for at most

two datasets.

3.3. Scalability of Non-hierarchical Classifiers

In order to study how efficiently different classification methods scale to larger

datasets, the five datasets used in this paper, Chiroptera, Rodentia, Aves, Puccin-

iomycetes, and Polypodiopsida datasets, are merged into a single dataset. Then,

the above three classifiers are trained using the same settings used in the previous

section. Unfortunately, the attempts to train the SVM classifiers (with both linear

and radial kernels) failed due to memory limitations, despite the decent memory

size of the test machine. However, the Random Forest classifier was trained suc-

cessfully and provided the results illustrated in Fig. 16. The maximum test score

(91.1% approx.) was obtained at k = 7.
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Fig. 16: The effect of changing the value of k on the classification f1-score of a

Random Forest Classifier with 10 estimators trained and tested on all the five

datasets merged together.

In order to be able to leverage the strength of SVM classifiers, while overcoming their

scalability issues, we employ our proposed hierarchical framework as demonstrated

next.

3.4. Evaluation of the Hierarchical Classification Framework

3.4.1. Taxonomic Class Predictor

The first stage of the proposed framework (see Fig. 3) involves the training of a

taxonomic class predictor. Figure 17 presents the effect of changing the value of k

on the f1-scores of three different classification methods (Random Forest with 10

estimators, SVM with linear kernel, and SVM with radial kernel) trained to predict

the taxonomic class on the merged dataset (that involves Chiroptera, Aves, Roden-

tia, Polypodiopsida, and Pucciniomycetes datasets).

From Fig. 17, we observe that the best f1-scores are obtained when using SVM

classifier with a linear kernel and setting the subsequence length k to be 5. The test

f1-score in this case is 99.9% which means that we are able to predict the taxonomic

class with an error of 0.1%, and then pass the sequence to a class-based classifier

capable of predicting the species with the f1-scores given by Fig. 19.
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Fig. 17: The effect of changing the value of k on the f1-scores of three different

classification methods trained to predict the taxonomic class on the merged dataset.

In the hierarchical classifier, two SVM classifiers with linear kernels are combined

in a hierarchical manner. The first one assigns a taxonomic class to each DNA bar-

code sequence, and passes the sequence down to the second level species classifier to

assign a species. The framework for the hierarchical method is illustrated in Meth-

ods section. SVM classifiers with linear kernels are chosen due to their relatively

high performance as shown with the above experimental results. Fig. 18 shows how

the performance of the two-stage SVM-hierarchical classifier and RF-hierarchical

classifier change with the value of k. Fig. 19 also compares the f1-scores of the non-

hierarchical classifier (with the RF classifier) trained on the merged dataset (with

k = 7) against the f1-score of the hierarchical classifier on the same dataset.

The above results demonstrate that the proposed hierarchical classification frame-

work provides superior f1-score performance than the non-hierarchical classifier. It

also overcomes the memory limitation that is discussed above.

Earlier studies mostly focused on the comprehensive evaluation of phylogenetic

and statistical learning models for DNA barcode-based classification, and pointed

out in agreement that SVM outperforms other alternatives consistently in most of

the studied datasets.9,16 However, a major limitation point was that SVM could

not scale for datasets that contain multiple species, classess, etc. Our results in

this section demonstrate that with the proposed hierarchical classification frame-
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work, SVM’s superior performance now become available for datasets with multiple

species, classes, etc. as well.

Fig. 18: The effect of changing the value of k on the f1-scores of the hierarchical

classifier that employs linear kernel SVM and RF sub-classifiers.

Fig. 19: Comparison between hierarchical and non-hierarchical models based on

their testing f1-score
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3.5. Robustness Analysis

In this section, we study the robustness of hierarchical and non-hierarchical classifi-

cation frameworks in the presence of mutations and/or noise in DNA sequences. In

order to simulate the mutations or sequencing noise, we randomly introduce artifi-

cial mutations in the DNA barcode sequences with different ratios. More specifically,

the mutation ratios are varied in the range [0,1] with a step of 0.1, and the f1-score

for each classifier is reported. For each mutation ratio, the number of mutation po-

sitions is calculated by multiplying the ratio by the sequence length, and then that

many mutations are introduced at random positions. Replacement characters are

chosen randomly from the set A, G, C, T.

Fig. 20: The effect of introducing artificial mutations on the classification test sam-

ples, f1-scores of a hierarchical RF classifier with the number of trees set to 10,

non-hierarchical RF classifier with the number of trees set to 10, a hierarchical

SVM classifier with linear kernel.

As discussed in the above experiments, one single SVM classifier could not be trained

using the merged dataset due to high memory requirements. However, the random

forest algorithm could scale to train one classifier capable of predicting the species

for a given DNA barcode sequence regardless of the taxonomic class in the merged

dataset. Here, we compare the robustness of the proposed hierarchical classification

framework (with SVM and RF subclassifiers, separately) to that of non-hierarchical

classifier (built with RF). The kernel that is employed in all classifiers is a linear
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kernel due to the relative efficiency of the SVM-linear classifiers as illustrated by

Fig. 11, 12, 13, 14, and 15. All studied classifiers are trained and tested with 10-folds

cross validation using the combined dataset that merges the five taxonomic classes

considered in this work.

Fig. 20 present the test f1-scores of classifiers. These results demonstrate that the

proposed hierarchical framework provides more robust f1-score performance in the

existence of mutations of noise in data in comparison to the conventional non-

hierarchical structure.

4. Conclusions

In this paper, the problem of assigning taxonomic labels to DNA sequences using

supervised learning is studied. A multi-level hierarchical classification framework

which combines multiple classifiers built for predicting a label (e.g., class, genus,

species, etc.) at different levels in organism taxonomy is proposed. The proposed

framework is evaluated on real data of 1400 species from BOLD systems. We demon-

strate that, in comparison to the conventional supervised classifiers, the proposed

method provides the following advantages: (i) better f1-scores, (ii) improved scala-

bility, (iii) more robustness against mutations or noise in sequence data.

The recent works in Natural Language Processing field have shown promising

progress in understanding text given sequences of characters. We believe that simi-

lar techniques may be employed to achieve better results in the problem of classify-

ing living organisms taxonomy. As part of our future work, we plan to investigate

the use of deep learning within the proposed hierarchical taxonomy classification

framework. In particular, we will explore the possible adaptation of Long Sort-Term

Memory and Convolutional Neural Networks architectures.

Availability: https://github.com/sehir-bioinformatics-database-lab/Hierarchical-

Supervised-Learners
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